Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 65(5): 694-703, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288670

RESUMO

Trans-species RNA interference (RNAi) occurs naturally when small RNAs (sRNAs) silence genes in species different from their origin. This phenomenon has been observed between plants and various organisms including fungi, animals and other plant species. Understanding the mechanisms used in natural cases of trans-species RNAi, such as sRNA processing and movement, will enable more effective development of crop protection methods using host-induced gene silencing (HIGS). Recent progress has been made in understanding the mechanisms of cell-to-cell and long-distance movement of sRNAs within individual plants. This increased understanding of endogenous plant sRNA movement may be translatable to trans-species sRNA movement. Here, we review diverse cases of natural trans-species RNAi focusing on current theories regarding intercellular and long-distance sRNA movement. We also touch on trans-species sRNA evolution, highlighting its research potential and its role in improving the efficacy of HIGS.


Assuntos
Plantas , Interferência de RNA , RNA de Plantas , Plantas/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Animais
2.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216188

RESUMO

The establishment of dorsal-ventral (DV) petal asymmetry is accompanied by differential growth of DV petal size, shape, and color differences, which enhance ornamental values. Genes involved in flower symmetry in Sinningia speciosa have been identified as CYCLOIDEA (SsCYC), but which gene regulatory network (GRN) is associated with SsCYC to establish DV petal asymmetry is still unknown. To uncover the GRN of DV petal asymmetry, we identified 630 DV differentially expressed genes (DV-DEGs) from the RNA-Seq of dorsal and ventral petals in the wild progenitor, S. speciosa 'ES'. Validated by qRT-PCR, genes in the auxin signaling transduction pathway, SsCYC, and a major regulator of anthocyanin biosynthesis were upregulated in dorsal petals. These genes correlated with a higher endogenous auxin level in dorsal petals, with longer tube length growth through cell expansion and a purple dorsal color. Over-expression of SsCYC in Nicotiana reduced petal size by regulating cell growth, suggesting that SsCYC also controls cell expansion. This suggests that auxin and SsCYC both regulate DV petal asymmetry. Transiently over-expressed SsCYC, however, could not activate most major auxin signaling genes, suggesting that SsCYC may not trigger auxin regulation. Whether auxin can activate SsCYC or whether they act independently to regulate DV petal asymmetry remains to be explored in the future.


Assuntos
Flores/genética , Ácidos Indolacéticos/metabolismo , Lamiales/genética , Transcriptoma/genética , Flores/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Lamiales/metabolismo , Transdução de Sinais/genética , Nicotiana/genética , Nicotiana/metabolismo
3.
Plant Direct ; 6(9): e445, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36091875

RESUMO

Advances in RNA biology such as RNAi, CRISPR, and the first mRNA vaccine represent the enormous potential of RNA research to address current problems. Additionally, plants are a diverse and undeniably essential resource for life threatened by climate change, loss of arable land, and pollution. Different aspects of RNA such as its processing, modification and structure are intertwined with plant development, physiology and stress response. This report details the findings of researchers around the world during the 23rd Penn State Symposium in Plant Biology with a focus in RNA biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA