Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35917817

RESUMO

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Variações do Número de Cópias de DNA/genética , Dosagem de Genes , Haploinsuficiência/genética , Humanos
2.
Brain ; 146(4): 1342-1356, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36226386

RESUMO

Understanding the exact molecular mechanisms involved in the aetiology of epileptogenic pathologies with or without tumour activity is essential for improving treatment of drug-resistant focal epilepsy. Here, we characterize the landscape of somatic genetic variants in resected brain specimens from 474 individuals with drug-resistant focal epilepsy using deep whole-exome sequencing (>350×) and whole-genome genotyping. Across the exome, we observe a greater number of somatic single-nucleotide variants in low-grade epilepsy-associated tumours (7.92 ± 5.65 single-nucleotide variants) than in brain tissue from malformations of cortical development (6.11 ± 4 single-nucleotide variants) or hippocampal sclerosis (5.1 ± 3.04 single-nucleotide variants). Tumour tissues also had the largest number of likely pathogenic variant carrying cells. low-grade epilepsy-associated tumours had the highest proportion of samples with one or more somatic copy-number variants (24.7%), followed by malformations of cortical development (5.4%) and hippocampal sclerosis (4.1%). Recurring somatic whole chromosome duplications affecting Chromosome 7 (16.8%), chromosome 5 (10.9%), and chromosome 20 (9.9%) were observed among low-grade epilepsy-associated tumours. For germline variant-associated malformations of cortical development genes such as TSC2, DEPDC5 and PTEN, germline single-nucleotide variants were frequently identified within large loss of heterozygosity regions, supporting the recently proposed 'second hit' disease mechanism in these genes. We detect somatic variants in 12 established lesional epilepsy genes and demonstrate exome-wide statistical support for three of these in the aetiology of low-grade epilepsy-associated tumours (e.g. BRAF) and malformations of cortical development (e.g. SLC35A2 and MTOR). We also identify novel significant associations for PTPN11 with low-grade epilepsy-associated tumours and NRAS Q61 mutated protein with a complex malformation of cortical development characterized by polymicrogyria and nodular heterotopia. The variants identified in NRAS are known from cancer studies to lead to hyperactivation of NRAS, which can be targeted pharmacologically. We identify large recurrent 1q21-q44 duplication including AKT3 in association with focal cortical dysplasia type 2a with hyaline astrocytic inclusions, another rare and possibly under-recognized brain lesion. The clinical-genetic analyses showed that the numbers of somatic single-nucleotide variant across the exome and the fraction of affected cells were positively correlated with the age at seizure onset and surgery in individuals with low-grade epilepsy-associated tumours. In summary, our comprehensive genetic screen sheds light on the genome-scale landscape of genetic variants in epileptic brain lesions, informs the design of gene panels for clinical diagnostic screening and guides future directions for clinical implementation of epilepsy surgery genetics.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Malformações do Desenvolvimento Cortical , Humanos , Epilepsia/patologia , Encéfalo/patologia , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/metabolismo , Genômica , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Epilepsias Parciais/metabolismo , Nucleotídeos/metabolismo
3.
Genome Res ; 30(1): 62-71, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31871067

RESUMO

Missense variant interpretation is challenging. Essential regions for protein function are conserved among gene-family members, and genetic variants within these regions are potentially more likely to confer risk to disease. Here, we generated 2871 gene-family protein sequence alignments involving 9990 genes and performed missense variant burden analyses to identify novel essential protein regions. We mapped 2,219,811 variants from the general population into these alignments and compared their distribution with 76,153 missense variants from patients. With this gene-family approach, we identified 465 regions enriched for patient variants spanning 41,463 amino acids in 1252 genes. As a comparison, by testing the same genes individually, we identified fewer patient variant enriched regions, involving only 2639 amino acids and 215 genes. Next, we selected de novo variants from 6753 patients with neurodevelopmental disorders and 1911 unaffected siblings and observed an 8.33-fold enrichment of patient variants in our identified regions (95% C.I. = 3.90-Inf, P-value = 2.72 × 10-11). By using the complete ClinVar variant set, we found that missense variants inside the identified regions are 106-fold more likely to be classified as pathogenic in comparison to benign classification (OR = 106.15, 95% C.I = 70.66-Inf, P-value < 2.2 × 10-16). All pathogenic variant enriched regions (PERs) identified are available online through "PER viewer," a user-friendly online platform for interactive data mining, visualization, and download. In summary, our gene-family burden analysis approach identified novel PERs in protein sequences. This annotation can empower variant interpretation.


Assuntos
Mapeamento Cromossômico , Predisposição Genética para Doença , Variação Genética , Família Multigênica , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Biologia Computacional/métodos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Mutação de Sentido Incorreto , Software , Interface Usuário-Computador
4.
PLoS Genet ; 15(9): e1008385, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31550250

RESUMO

Iran, despite its size, geographic location and past cultural influence, has largely been a blind spot for human population genetic studies. With only sparse genetic information on the Iranian population available, we pursued its genome-wide and geographic characterization based on 1021 samples from eleven ethnic groups. We show that Iranians, while close to neighboring populations, present distinct genetic variation consistent with long-standing genetic continuity, harbor high heterogeneity and different levels of consanguinity, fall apart into a cluster of similar groups and several admixed ones and have experienced numerous language adoption events in the past. Our findings render Iran an important source for human genetic variation in Western and Central Asia, will guide adequate study sampling and assist the interpretation of putative disease-implicated genetic variation. Given Iran's internal genetic heterogeneity, future studies will have to consider ethnic affiliations and possible admixture.


Assuntos
Etnicidade/genética , Variação Genética/genética , Adulto , Idoso , Consanguinidade , Feminino , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Irã (Geográfico)/etnologia , Masculino , Pessoa de Meia-Idade
5.
Mov Disord ; 36(2): 434-441, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33150996

RESUMO

BACKGROUND: Parkinson's disease is the second most common neurodegenerative disorder and affects people from all ethnic backgrounds, yet little is known about the genetics of Parkinson's disease in non-European populations. In addition, the overall identification of copy number variants at a genome-wide level has been understudied in Parkinson's patients. The objective of this study was to understand the genome-wide burden of copy number variants in Latinos and its association with Parkinson's disease. METHODS: We used genome-wide genotyping data from 747 Parkinson's disease patients and 632 controls from the Latin American Research Consortium on the Genetics of Parkinson's disease. RESULTS: Genome-wide copy number burden analysis showed that patients were significantly enriched for copy number variants overlapping known Parkinson's disease genes compared with controls (odds ratio, 3.97; 95%CI, 1.69-10.5; P = 0.018). PRKN showed the strongest copy number burden, with 20 copy number variant carriers. These patients presented an earlier age of disease onset compared with patients with other copy number variants (median age at onset, 31 vs 57 years, respectively; P = 7.46 × 10-7 ). CONCLUSIONS: We found that although overall genome-wide copy number variant burden was not significantly different, Parkinson's disease patients were significantly enriched with copy number variants affecting known Parkinson's disease genes. We also identified that of 250 patients with early-onset disease, 5.6% carried a copy number variant on PRKN in our cohort. Our study is the first to analyze genome-wide copy number variant association in Latino Parkinson's disease patients and provides insights about this complex disease in this understudied population. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Idade de Início , Variações do Número de Cópias de DNA/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Humanos , América Latina , Pessoa de Meia-Idade , Doença de Parkinson/genética
6.
Brain ; 143(7): 2106-2118, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568404

RESUMO

Cytogenic testing is routinely applied in most neurological centres for severe paediatric epilepsies. However, which characteristics of copy number variants (CNVs) confer most epilepsy risk and which epilepsy subtypes carry the most CNV burden, have not been explored on a genome-wide scale. Here, we present the largest CNV investigation in epilepsy to date with 10 712 European epilepsy cases and 6746 ancestry-matched controls. Patients with genetic generalized epilepsy, lesional focal epilepsy, non-acquired focal epilepsy, and developmental and epileptic encephalopathy were included. All samples were processed with the same technology and analysis pipeline. All investigated epilepsy types, including lesional focal epilepsy patients, showed an increase in CNV burden in at least one tested category compared to controls. However, we observed striking differences in CNV burden across epilepsy types and investigated CNV categories. Genetic generalized epilepsy patients have the highest CNV burden in all categories tested, followed by developmental and epileptic encephalopathy patients. Both epilepsy types also show association for deletions covering genes intolerant for truncating variants. Genome-wide CNV breakpoint association showed not only significant loci for genetic generalized and developmental and epileptic encephalopathy patients but also for lesional focal epilepsy patients. With a 34-fold risk for developing genetic generalized epilepsy, we show for the first time that the established epilepsy-associated 15q13.3 deletion represents the strongest risk CNV for genetic generalized epilepsy across the whole genome. Using the human interactome, we examined the largest connected component of the genes overlapped by CNVs in the four epilepsy types. We observed that genetic generalized epilepsy and non-acquired focal epilepsy formed disease modules. In summary, we show that in all common epilepsy types, 1.5-3% of patients carry epilepsy-associated CNVs. The characteristics of risk CNVs vary tremendously across and within epilepsy types. Thus, we advocate genome-wide genomic testing to identify all disease-associated types of CNVs.


Assuntos
Variações do Número de Cópias de DNA/genética , Epilepsia/genética , Predisposição Genética para Doença/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino
7.
Bioinformatics ; 35(21): 4478-4479, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31086968

RESUMO

MOTIVATION: The correct classification of missense variants as benign or pathogenic remains challenging. Pathogenic variants are expected to have higher deleterious prediction scores than benign variants in the same gene. However, most of the existing variant annotation tools do not reference the score range of benign population variants on gene level. RESULTS: We present a web-application, Variant Score Ranker, which enables users to rapidly annotate variants and perform gene-specific variant score ranking on the population level. We also provide an intuitive example of how gene- and population-calibrated variant ranking scores can improve epilepsy variant prioritization. AVAILABILITY AND IMPLEMENTATION: http://vsranker.broadinstitute.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mutação de Sentido Incorreto , Software
8.
Epilepsia ; 60(8): 1733-1742, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31313283

RESUMO

OBJECTIVE: The cyclin-dependent kinase like 5 (CDKL5) gene is a known cause of early onset developmental and epileptic encephalopathy, also known as CDKL5 deficiency disorder (CDD). We sought to (1) provide a description of seizure types in patients with CDD, (2) provide an assessment of the frequency of seizure-free periods and cortical visual impairment (CVI), (3) correlate these features with genotype and gender, and (4) correlate these features with developmental milestones. METHODS: This is a cohort study of patients with CDD. Phenotypic features were explored and correlated with gene variant grouping and gender. A developmental score was created based on achieving seven primary milestones. Phenotypic variables were correlated with the developmental score to explore markers of better developmental outcomes. Multivariate linear regression was used to account for age at last visit. RESULTS: Ninety-two patients with CDD were seen during the enrollment period. Eighteen were male (19%); median age at last visit was 5 years (interquartile range = 2.0-11.0). Eighty-one percent of patients developed epileptic spasms, but only 47% of those also had hypsarrhythmia. Previously described hypermotor-tonic-spasms sequence was seen in only 24% of patients, but 56% of patients had seizures with multiple phases (often tonic and spasms). Forty-three percent of patients experienced a seizure-free period ranging from 1 to >12 months, but only 6% were still seizure-free at the last visit. CVI was present in 75% of all CDD patients. None of these features was associated with genotype group or gender. CVI was correlated with reduced milestone achievement after adjusting for age at last visit and a history of hypsarrhythmia. SIGNIFICANCE: The most common seizure types in CDD are epileptic spasms (often without hypsarrhythmia) and tonic seizures that may cluster together. CVI is a common feature in CDD and is correlated with achieving fewer milestones.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia/genética , Síndromes Epilépticas/genética , Espasmos Infantis/genética , Transtornos da Visão/genética , Fatores Etários , Criança , Pré-Escolar , Deficiências do Desenvolvimento/etiologia , Epilepsia/etiologia , Síndromes Epilépticas/complicações , Feminino , Estudos de Associação Genética , Humanos , Masculino , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Fatores Sexuais , Espasmos Infantis/complicações , Transtornos da Visão/etiologia
9.
Epilepsia ; 59(11): 2145-2152, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30341947

RESUMO

OBJECTIVE: Increasing availability of surgically resected brain tissue from patients with focal epilepsy and focal cortical dysplasia or low-grade glioneuronal tumors has fostered large-scale genetic examination. However, assessment of pathogenicity of germ line and somatic variants remains difficult. Here, we present a state-of-the-art evaluation of reported genes and variants associated with epileptic brain lesions. METHODS: We critically reevaluated the pathogenicity for all neuropathology-associated variants reported to date in the PubMed and ClinVar databases, including 101 neuropathology-associated missense variants encompassing 11 disease-related genes. We assessed gene variant tolerance and classified all identified missense variants according to guidelines from the American College of Medical Genetics and Genomics (ACMG). We further extended the bioinformatic variant prediction by introducing a novel gene-specific deleteriousness ranking for prediction scores. RESULTS: Application of ACMG guidelines and in silico gene variant tolerance analysis classified only seven of 11 genes to be likely disease-associated according to the reported disease mechanism, whereas 61 (60.4%) of 101 variants of those genes were classified as of uncertain significance, 37 (36.6%) as being likely pathogenic, and 3 (3%) as being pathogenic. SIGNIFICANCE: We concluded that the majority of neuropathology-associated variants reported to date do not have enough evidence to be classified as pathogenic. Interpretation of lesion-associated variants remains challenging, and application of current ACMG guidelines is recommended for interpretation and prediction.


Assuntos
Biologia Computacional/métodos , Biologia Computacional/normas , Epilepsia/genética , Epilepsia/patologia , Variação Genética/genética , Bases de Dados Genéticas/normas , Feminino , Predisposição Genética para Doença/genética , Testes Genéticos , Humanos , Masculino
10.
Nat Commun ; 14(1): 4392, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474567

RESUMO

Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice.


Assuntos
Variações do Número de Cópias de DNA , Epilepsia , Humanos , Fenótipo , Epilepsia/genética , Estudo de Associação Genômica Ampla , Convulsões
11.
JAMA Netw Open ; 3(1): e1920415, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-32003824

RESUMO

Importance: PTEN is among the most common autism spectrum disorder (ASD)-predisposition genes. Germline PTEN mutation carriers can develop malignant neoplasms and/or neurodevelopmental disorders such as ASD and developmental delay. Why a single gene contributes to disparate clinical outcomes, even in patients with identical PTEN mutations, remains unclear. Objective: To investigate the association of copy number variations (CNVs), altered numbers of copies of DNA sequences within the genome, with specific phenotypes in patients with germline PTEN mutations. Design, Setting, and Participants: This prospective cohort study examined genome-wide microarrays performed on blood-derived DNA to detect germline CNVs from September 1, 2005, through January 3, 2018. Multicenter accrual occurred from community and academic medical centers throughout North America, South America, Europe, Australia, and Asia. Participants included patients with PTEN hamartoma tumor syndrome (PHTS) (n = 481), molecularly defined as carrying germline pathogenic PTEN mutations. Data were analyzed from November 14, 2018, to August 1, 2019. Exposures: Detection of CNVs from patient-derived germline DNA. Main Outcomes and Measures: Prevalence of pathogenic and/or likely pathogenic CNVs in patients with PHTS and association with ASD/developmental delay and/or cancer, ascertained through medical records and pathology reports. Results: The study included 481 patients with PHTS (mean [SD] age, 33.2 [21.6] years; 268 female [55.7%]). The analytic series consisted of 309 patients with PHTS and genetically determined European ancestry. Patients were divided into 3 phenotypic groups, excluding family members within each group. These include 110 patients with ASD/developmental delay, 194 without ASD/developmental delay, and 121 with cancer (of whom 116 were in the no ASD/developmental delay group). Genome-wide evaluation of autosomal CNVs indicated an increased CNV burden, particularly duplications in genic regions, in patients with ASD/developmental delay compared with those without ASD/developmental delay (odds ratio [OR], 1.9; 95% CI, 1.1-3.4; P = .03) and those with cancer (OR, 2.5; 95% CI, 1.3-4.6; P = .003). Eleven of the 110 patients (10.0%) with ASD/developmental delay carried pathogenic and/or likely pathogenic CNVs associated with neurodevelopmental disorders, compared with 5 of 194 (2.6%) without ASD/developmental delay (OR, 4.2; 95% CI, 1.4-13.7; P = .008) and 2 of 121 (1.7%) with cancer (OR, 6.6; 95% CI, 1.6-44.5; P = .007). Evidence of an association between pathogenic and/or likely pathogenic CNVs and PHTS with ASD/developmental delay was further supported in a validation series of 69 patients with PHTS of genetically determined non-European ancestry. Conclusions and Relevance: These findings suggest that copy number variations are associated with the ASD/developmental delay clinical phenotype in PHTS, providing proof of principle for similarly heterogeneous disorders lacking outcome-specific associations.


Assuntos
Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , PTEN Fosfo-Hidrolase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
12.
Sci Rep ; 10(1): 15205, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938993

RESUMO

Psychogenic nonepileptic seizures (PNES) are diagnosed in approximately 30% of patients referred to tertiary care epilepsy centers. Little is known about the molecular pathology of PNES, much less about possible underlying genetic factors. We generated whole-exome sequencing and whole-genome genotyping data to identify rare, pathogenic (P) or likely pathogenic (LP) variants in 102 individuals with PNES and 448 individuals with focal (FE) or generalized (GE) epilepsy. Variants were classified for all individuals based on the ACMG-AMP 2015 guidelines. For research purposes only, we considered genes associated with neurological or psychiatric disorders as candidate genes for PNES. We observe in this first genetic investigation of PNES that six (5.88%) individuals with PNES without coexistent epilepsy carry P/LP variants (deletions at 10q11.22-q11.23, 10q23.1-q23.2, distal 16p11.2, and 17p13.3, and nonsynonymous variants in NSD1 and GABRA5). Notably, the burden of P/LP variants among the individuals with PNES was similar and not significantly different to the burden observed in the individuals with FE (3.05%) or GE (1.82%) (PNES vs. FE vs. GE (3 × 2 χ2), P = 0.30; PNES vs. epilepsy (2 × 2 χ2), P = 0.14). The presence of variants in genes associated with monogenic forms of neurological and psychiatric disorders in individuals with PNES shows that genetic factors are likely to play a role in PNES or its comorbidities in a subset of individuals. Future large-scale genetic research studies are needed to further corroborate these interesting findings in PNES.


Assuntos
Epilepsias Parciais/genética , Epilepsia Generalizada/genética , Sequenciamento do Exoma/métodos , Estudo de Associação Genômica Ampla/métodos , Convulsões/genética , Adulto , Substituição de Aminoácidos , Cromossomos Humanos/genética , Feminino , Predisposição Genética para Doença , Histona-Lisina N-Metiltransferase/genética , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de GABA-A/genética , Deleção de Sequência , Adulto Jovem
13.
Epileptic Disord ; 21(1): 65-77, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782578

RESUMO

We comprehensively studied the clinical presentation, stereo-EEG and MRI findings, histopathological diagnosis, and brain somatic mutations in a retrospective series of drug-resistant patients with difficult-to-localize epilepsy due to focal cortical dysplasia at the bottom of a sulcus (BOS-FCD). We identified 10 patients with BOS-FCD from the Cleveland Clinic epilepsy surgery database submitted for intracranial video-EEG monitoring. Brain MRI, including voxel-based morphometric analysis and surgical tissue submitted for histopathology, was reviewed. Paraffin tissue samples from five patients were made available for targeted next-generation sequencing. Postsurgical follow-up was available in nine patients. BOS-FCD was identified in the superior frontal sulcus in six patients, inferior frontal sulcus in one patient, central sulcus in one patient, and intraparietal sulcus in two patients. All patients had stereotyped seizures. Intracranial EEG recordings identified ictal onset at the BOS-FCD in all 10 patients, whereas ictal scalp EEG had a localizing value in only six patients. Complete resection was achieved by lesionectomy or focal corticectomy in nine patients. Histopathologically, six patients had FCD type IIb and three had FCD type IIa. Next-generation sequencing analysis of DNA extracted from lesion-enriched (micro-dissected) tissue from five patients with FCD type II led to the identification of a germline frameshift insertion in DEPDC5, introducing a premature stop in one patient. Eight out of nine patients with available follow-up were completely seizure-free (Engel Class IA) after a mean follow-up period of six years. Our results confirm previous studies classifying difficult-to-localize BOS-FCD into the emerging spectrum of FCD ILAE type II mTORopathies. Further studies with large patient numbers and ultra-deep genetic testing may help to bridge the current knowledge gap in genetic aetiologies of FCD.


Assuntos
Epilepsias Parciais/diagnóstico , Malformações do Desenvolvimento Cortical/diagnóstico , Adolescente , Adulto , Eletrocorticografia , Epilepsias Parciais/genética , Epilepsias Parciais/patologia , Epilepsias Parciais/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical/fisiopatologia , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos , Avaliação de Resultados em Cuidados de Saúde , Adulto Jovem
14.
Eur J Hum Genet ; 27(11): 1738-1744, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31358956

RESUMO

It is challenging to estimate genetic variant burden across different subtypes of epilepsy. Herein, we used a comparative approach to assess the genetic variant burden and genotype-phenotype correlations in four most common brain lesions in patients with drug-resistant focal epilepsy. Targeted sequencing analysis was performed for a panel of 161 genes with a mean coverage of >400×. Lesional tissue was histopathologically reviewed and dissected from hippocampal sclerosis (n = 15), ganglioglioma (n = 16), dysembryoplastic neuroepithelial tumors (n = 8), and focal cortical dysplasia type II (n = 15). Peripheral blood (n = 12) or surgical tissue samples histopathologically classified as lesion-free (n = 42) were available for comparison. Variants were classified as pathogenic or likely pathogenic according to American College of Medical Genetics and Genomics guidelines. Overall, we identified pathogenic and likely pathogenic variants in 25.9% of patients with a mean coverage of 383×. The highest number of pathogenic/likely pathogenic variants was observed in patients with ganglioglioma (43.75%; all somatic) and dysembryoplastic neuroepithelial tumors (37.5%; all somatic), and in 20% of cases with focal cortical dysplasia type II (13.33% somatic, 6.67% germline). Pathogenic/likely pathogenic positive genes were disorder specific and BRAF V600E the only recurrent pathogenic variant. This study represents a reference for the genetic variant burden across the four most common lesion entities in patients with drug-resistant focal epilepsy. The observed large variability in variant burden by epileptic lesion type calls for whole exome sequencing of histopathologically well-characterized tissue in a diagnostic setting and in research to discover novel disease-associated genes.


Assuntos
Neoplasias Encefálicas/genética , Epilepsia Resistente a Medicamentos/genética , Epilepsia/genética , Predisposição Genética para Doença/genética , Variação Genética , Encéfalo , Ganglioglioma/genética , Estudos de Associação Genética , Alemanha , Glioma/genética , Humanos , Malformações do Desenvolvimento Cortical do Grupo I/genética , Esclerose/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA