Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(16): 3401-3410, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563244

RESUMO

Living active collectives have evolved with remarkable self-patterning capabilities to adapt to the physical and biological constraints crucial for their growth and survival. However, the intricate process by which complex multicellular patterns emerge from a single founder cell remains elusive. In this study, we utilize an agent-based model, validated through single-cell microscopy imaging, to track the three-dimensional (3D) morphodynamics of cells within growing bacterial biofilms encased by agarose gels. The confined growth conditions give rise to a spatiotemporally heterogeneous stress landscape within the biofilm. In the core of the biofilm, where high hydrostatic and low shear stresses prevail, cell packing appears disordered. In contrast, near the gel-cell interface, a state of high shear stress and low hydrostatic stress emerges, driving nematic ordering, albeit with a time delay inherent to shear stress relaxation. Strikingly, we observe a robust spatiotemporal correlation between stress anisotropy and nematic ordering within these confined biofilms. This correlation suggests a mechanism whereby stress anisotropy plays a pivotal role in governing the spatial organization of cells. The reciprocity between stress anisotropy and cell ordering in confined biofilms opens new avenues for innovative 3D mechanically guided patterning techniques for living active collectives, which hold significant promise for a wide array of environmental and biomedical applications.


Assuntos
Biofilmes , Estresse Mecânico , Anisotropia , Modelos Biológicos
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330824

RESUMO

Biofilms are aggregates of bacterial cells surrounded by an extracellular matrix. Much progress has been made in studying biofilm growth on solid substrates; however, little is known about the biophysical mechanisms underlying biofilm development in three-dimensional confined environments in which the biofilm-dwelling cells must push against and even damage the surrounding environment to proliferate. Here, combining single-cell imaging, mutagenesis, and rheological measurement, we reveal the key morphogenesis steps of Vibrio cholerae biofilms embedded in hydrogels as they grow by four orders of magnitude from their initial size. We show that the morphodynamics and cell ordering in embedded biofilms are fundamentally different from those of biofilms on flat surfaces. Treating embedded biofilms as inclusions growing in an elastic medium, we quantitatively show that the stiffness contrast between the biofilm and its environment determines biofilm morphology and internal architecture, selecting between spherical biofilms with no cell ordering and oblate ellipsoidal biofilms with high cell ordering. When embedded in stiff gels, cells self-organize into a bipolar structure that resembles the molecular ordering in nematic liquid crystal droplets. In vitro biomechanical analysis shows that cell ordering arises from stress transmission across the biofilm-environment interface, mediated by specific matrix components. Our imaging technique and theoretical approach are generalizable to other biofilm-forming species and potentially to biofilms embedded in mucus or host tissues as during infection. Our results open an avenue to understand how confined cell communities grow by means of a compromise between their inherent developmental program and the mechanical constraints imposed by the environment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Matriz Extracelular/fisiologia , Análise de Célula Única/métodos , Vibrio cholerae/fisiologia
3.
Nat Commun ; 15(1): 2191, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467648

RESUMO

The growth and division of mycobacteria, which include clinically relevant pathogens, deviate from that of canonical bacterial models. Despite their Gram-positive ancestry, mycobacteria synthesize and elongate a diderm envelope asymmetrically from the poles, with the old pole elongating more robustly than the new pole. The phosphatidylinositol-anchored lipoglycans lipomannan (LM) and lipoarabinomannan (LAM) are cell envelope components critical for host-pathogen interactions, but their physiological functions in mycobacteria remained elusive. In this work, using biosynthetic mutants of these lipoglycans, we examine their roles in maintaining cell envelope integrity in Mycobacterium smegmatis and Mycobacterium tuberculosis. We find that mutants defective in producing mature LAM fail to maintain rod cell shape specifically at the new pole and para-septal regions whereas a mutant that produces a larger LAM becomes multi-septated. Therefore, LAM plays critical and distinct roles at subcellular locations associated with division in mycobacteria, including maintenance of local cell wall integrity and septal placement.


Assuntos
Lipopolissacarídeos , Mycobacterium tuberculosis , Mycobacterium smegmatis/genética , Parede Celular , Mycobacterium tuberculosis/genética
4.
bioRxiv ; 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-36993273

RESUMO

The growth and division of mycobacteria, which include several clinically relevant pathogens, deviate significantly from that of canonical bacterial models. Despite their Gram-positive ancestry, mycobacteria synthesize and elongate a diderm envelope asymmetrically from the poles, with the old pole elongating more robustly than the new pole. In addition to being structurally distinct, the molecular components of the mycobacterial envelope are also evolutionarily unique, including the phosphatidylinositol-anchored lipoglycans lipomannan (LM) and lipoarabinomannan (LAM). LM and LAM modulate host immunity during infection, but their role outside of intracellular survival remains poorly understood, despite their widespread conservation among non-pathogenic and opportunistically pathogenic mycobacteria. Previously, Mycobacterium smegmatis and Mycobacterium tuberculosis mutants producing structurally altered LM and LAM were shown to grow slowly under certain conditions and to be more sensitive to antibiotics, suggesting that mycobacterial lipoglycans may support cellular integrity or growth. To test this, we constructed multiple biosynthetic lipoglycan mutants of M. smegmatis and determined the effect of each mutation on cell wall biosynthesis, envelope integrity, and division. We found that mutants deficient in LAM, but not LM, fail to maintain cell wall integrity in a medium-dependent manner, with envelope deformations specifically associated with septa and new poles. Conversely, a mutant producing abnormally large LAM formed multiseptated cells in way distinct from that observed in a septal hydrolase mutant. These results show that LAM plays critical and distinct roles at subcellular locations associated with division in mycobacteria, including maintenance of local cell envelope integrity and septal placement.

5.
Nat Commun ; 14(1): 2104, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055389

RESUMO

Bacterial biofilms are formed on environmental surfaces and host tissues, and facilitate host colonization and antibiotic resistance by human pathogens. Bacteria often express multiple adhesive proteins (adhesins), but it is often unclear whether adhesins have specialized or redundant roles. Here, we show how the model biofilm-forming organism Vibrio cholerae uses two adhesins with overlapping but distinct functions to achieve robust adhesion to diverse surfaces. Both biofilm-specific adhesins Bap1 and RbmC function as a "double-sided tape": they share a ß-propeller domain that binds to the biofilm matrix exopolysaccharide, but have distinct environment-facing domains. Bap1 adheres to lipids and abiotic surfaces, while RbmC mainly mediates binding to host surfaces. Furthermore, both adhesins contribute to adhesion in an enteroid monolayer colonization model. We expect that similar modular domains may be utilized by other pathogens, and this line of research can potentially lead to new biofilm-removal strategies and biofilm-inspired adhesives.


Assuntos
Vibrio cholerae , Humanos , Vibrio cholerae/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Adesinas Bacterianas , Polissacarídeos/química
6.
PNAS Nexus ; 1(4): pgac217, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36714841

RESUMO

Cavitation has long been recognized as a crucial predictor, or precursor, to the ultimate failure of various materials, ranging from ductile metals to soft and biological materials. Traditionally, cavitation in solids is defined as an unstable expansion of a void or a defect within a material. The critical applied load needed to trigger this instability -- the critical pressure -- is a lengthscale independent material property and has been predicted by numerous theoretical studies for a breadth of constitutive models. While these studies usually assume that cavitation initiates from defects in the bulk of an otherwise homogeneous medium, an alternative and potentially more ubiquitous scenario can occur if the defects are found at interfaces between two distinct media within the body. Such interfaces are becoming increasingly common in modern materials with the use of multimaterial composites and layer-by-layer additive manufacturing methods. However, a criterion to determine the threshold for interfacial failure, in analogy to the bulk cavitation limit, has yet to be reported. In this work, we fill this gap. Our theoretical model captures a lengthscale independent limit for interfacial cavitation, and is shown to agree with our observations at two distinct lengthscales, via two different experimental systems. To further understand the competition between the two cavitation modes (bulk versus interface), we expand our investigation beyond the elastic response to understand the ensuing unstable propagation of delamination at the interface. A phase diagram summarizes these results, showing regimes in which interfacial failure becomes the dominant mechanism.

7.
Nat Commun ; 12(1): 6632, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789754

RESUMO

In growing active matter systems, a large collection of engineered or living autonomous units metabolize free energy and create order at different length scales as they proliferate and migrate collectively. One such example is bacterial biofilms, surface-attached aggregates of bacterial cells embedded in an extracellular matrix that can exhibit community-scale orientational order. However, how bacterial growth coordinates with cell-surface interactions to create distinctive, long-range order during biofilm development remains elusive. Here we report a collective cell reorientation cascade in growing Vibrio cholerae biofilms that leads to a differentially ordered, spatiotemporally coupled core-rim structure reminiscent of a blooming aster. Cell verticalization in the core leads to a pattern of differential growth that drives radial alignment of the cells in the rim, while the growing rim generates compressive stresses that expand the verticalized core. Such self-patterning disappears in nonadherent mutants but can be restored through opto-manipulation of growth. Agent-based simulations and two-phase active nematic modeling jointly reveal the strong interdependence of the driving forces underlying the differential ordering. Our findings offer insight into the developmental processes that shape bacterial communities and provide ways to engineer phenotypes and functions in living active matter.


Assuntos
Biofilmes/crescimento & desenvolvimento , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Fenômenos Biomecânicos , Modelos Biológicos , Mutação , Vibrio cholerae/citologia , Vibrio cholerae/fisiologia
8.
J Fluid Mech ; 869: 468-499, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33380748

RESUMO

The effect of permeability heterogeneities and viscosity variations on miscible displacement processes in porous media is examined using high-resolution numerical simulations and reduced theoretical modelling. The planar injection of one fluid into a fluid-saturated, two-dimensional porous medium with a permeability that varies perpendicular to the flow direction is studied. Three cases are considered, in which the injected fluid is equally viscous, more viscous or less viscous than the ambient fluid. In general it is found that the flow in each case evolves through three regimes. At early times, the flow exhibits the concentration evolves diffusively, independent of both the permeability structure and the viscosity ratio. At intermediate times, the flow exhibits different dynamics including channelling and fingering, depending on whether the injected fluid is more or less viscous than the ambient fluid, and depending on the relative magnitude of the viscosity and permeability variations. Finally, at late times, the flow becomes independent of the viscosity ratio and dominated by shear-enhanced (Taylor) dispersion. For each of the regimes identified above, we develop reduced-order models for the evolution of the transversely averaged concentration and compare them to the full numerical simulations.

9.
Phys Rev E ; 93(2): 023116, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26986422

RESUMO

Fluid flowing through a deformable porous medium imparts viscous drag on the solid matrix, causing it to deform. This effect is investigated theoretically and experimentally in a one-dimensional configuration. The experiments consist of the downwards flow of water through a saturated pack of small, soft, hydrogel spheres, driven by a pressure head that can be increased or decreased. As the pressure head is increased, the effective permeability of the medium decreases and, in contrast to flow through a rigid medium, the flux of water is found to increase towards a finite upper bound such that it becomes insensitive to changes in the pressure head. Measurements of the internal deformation, extracted by particle tracking, show that the medium compacts differentially, with the porosity being lower at the base than at the upper free surface. A general theoretical model is derived, and the predictions of the model give good agreement with experimental measurements from a series of experiments in which the applied pressure head is sequentially increased. However, contrary to theory, all the experimental results display a distinct and repeatable hysteresis: the flux through the material for a particular applied pressure drop is appreciably lower when the pressure has been decreased to that value compared to when it has been increased to the same value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA