Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 84: 85-100, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527984

RESUMO

The phylogeny and historical demography of small Eurasian vipers of the Vipera ursinii and V. renardi complexes were studied using mitochondrial DNA sequences analysed with Bayesian inference, Maximum Likelihood and Maximum Parsimony approaches, and mismatch distributions. Diversification in the group resulted from an initial dispersion in the later Pliocene - Pleistocene in two directions: north-westwards via the Balkans (V. ursinii complex) and north-eastwards from Asia Minor via the Caucasus (V. renardi complex). An independent, comparatively recent transition occurred from montane habitats to lowland grasslands in different mitochondrial lineages during the Late Pleistocene, when representatives of the both complexes had reached lowland steppes to the north. Effective population size showed clear signs of rapid growth in eastern V. renardi, triggered by colonization of vast lowland steppes, but in western V. ursinii complex grew during the Last Glaciation and experienced stabilization in Holocene. Expansion and population growth in lowland lineages of V. renardi was not strongly affected by Pleistocene climatic oscillations, when cold, dry conditions could have favoured species living in open grasslands. The high diversity of closely related haplotypes in the Caucasus and Tien-Shan could have resulted from repetitive expansion-constriction-isolation events in montane regions during Pleistocene climate fluctuations. The mitochondrial phylogeny pattern conflicts with the current taxonomy.


Assuntos
Ecossistema , Filogenia , Viperidae/classificação , Animais , Ásia , Teorema de Bayes , DNA Mitocondrial/genética , Pradaria , Haplótipos , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
2.
Elife ; 82019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31767056

RESUMO

The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species' geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.


Assuntos
Charadriiformes/genética , DNA Antigo/análise , Extinção Biológica , Dinâmica Populacional , Animais , DNA Mitocondrial , Variação Genética , Genoma Mitocondrial/genética , Humanos , Filogenia
3.
Zootaxa ; 4227(1): zootaxa.4227.1.4, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28187594

RESUMO

Meadow vipers (Vipera ursinii-renardi complex) are small-bodied snakes that live in either lowland grasslands or montane subalpine-alpine meadows spanning a distribution from France to western China. This complex has previously been the focus of several taxonomic studies which were based mainly on morphological, allozyme or immunological characters and did not clearly resolve the relationships between the various taxa. Recent mitochondrial DNA analyses found unexpected relationships within the complex which had taxonomical consequences for the detected lineages. The most surprising was the basal phylogenetic position of Vipera ursinii graeca, a taxon described almost 30 years ago from the mountains of Greece. We present here new analyses of three nuclear markers (BDNF, NT3, PRLR; a first for studies of meadow and steppe vipers) as well as analyses of newly obtained mitochondrial DNA sequences (CYT B, ND4).Our Bayesian analyses of nuclear sequences are concordant with previous studies of mitochondrial DNA, in that the phylogenetic position of the graeca clade is a clearly distinguished and distinct lineage separated from all other taxa in the complex. These phylogenetic results are also supported by a distinct morphology, ecology and isolated distribution of this unique taxon. Based on several data sets and an integrative species concept we recommend to elevate this taxon to species level: Vipera graeca Nilson & Andrén, 1988 stat. nov.


Assuntos
Viperidae , Animais , Teorema de Bayes , China , DNA Mitocondrial , França , Pradaria , Grécia , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA