Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Sci Food Agric ; 104(1): 196-206, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37555248

RESUMO

BACKGROUND: Schisandra chinensis (Turcz.) Baill, a fruit utilized in traditional Chinese medicine (TCM), has a long history of medical application. It has been used to treat diseases of the gastrointestinal tract. Schisandra chinensis (Turcz.) Baill polysaccharide (SACP) is an important biologically active ingredient that has been shown to have a variety of beneficial effects including immune regulation and anti-oxidative properties. Ulcerative colitis (UC) is a complicated gastrointestinal inflammatory disease. We explore the protective effect of SACP against UC. RESULTS: Schisandra chinensis (Turcz.) Baill polysaccharide significantly reduced the disease activity index (DAI) and levels of myeloperoxidase(MPO) and malondialdehyde (MDA) in colonic tissue. It also alleviated weight loss and histopathological damage of mice. The expression of MUC2 and occludin proteins was increased and the barrier function of the colonic mucosa was enhanced by SACP treatment. NF-κB pathway activation was also inhibited and the production of pro-inflammatory cytokines was decreased whereas anti-inflammatory cytokines were increased. 16SrDNA sequencing of fecal flora showed that SACP increased the abundance of Muribaculaceaeunclassified, LachnospiraceaeNK4A136group and reduced the abundance of Bacteroides and Erysipelatoclostridium. CONCLUSION: Schisandra chinensis (Turcz.) Baill polysaccharide can protect against Dextran Sulfate Sodium Salt (DSS)-induced ulcerative colitis in mice. © 2023 Society of Chemical Industry.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Schisandra , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , NF-kappa B/genética , NF-kappa B/metabolismo , Schisandra/química , Schisandra/metabolismo , Polissacarídeos , Colo/metabolismo , Citocinas/metabolismo , Cloreto de Sódio , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
2.
Appl Microbiol Biotechnol ; 104(23): 10165-10179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33044599

RESUMO

Due to the high mortality rate and an increase in breast cancer incidence, it has been challenging for researchers to come across an effective chemotherapeutic strategy with minimum side effects. Therefore, the need for the development of effective chemotherapeutic drugs is still on the verge. Consequently, we approached a new mechanism to address this issue. The naturally available peptide named latcripin-7A (LP-7A), extracted from a mushroom called Lentinula edodes, provided us promising results in terms of growth arrest, apoptosis, and autophagy in breast cancer cells (MCF-7 and MDA-MB-231). Expressions of protein markers for apoptosis, autophagy, and cell cycle were confirmed via Western blot analysis. Migration and invasion assays were performed to analyze the anti-migratory and anti-invasive properties of LP-7A, while cell cycle analysis was performed via flow cytometry to evaluate its affect over cell growth. Supportive assays were performed like acridine orange, Hoechst 33258 stain, DNA fragmentation, and mitochondrial membrane potential (MMP) to further confirm the anticancer effect of LP-7A on breast cancer cell lines. It is concluded that LP-7A effectively reduces migration and promotes apoptosis as well as autophagy in MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell growth arrest at G0/G1 phase and decreasing mitochondrial membrane potential without adverse effects on MCF-10A normal breast cells. KEY POINTS: • In this study, we have investigated the anti-cancer activity of novel latcripin-7A (LP-7A), a protein extracted as a result of de novo characterization of Lentinula edodes C91-3. • We conclude in our research work that LP-7A can initiate diverse cell death-related events, i.e., apoptosis and autophagy in both triple-positive and triple-negative breast cancer cell lines by interacting with different nodes of cellular signaling that can further be investigated in vivo to gain a better understanding.


Assuntos
Neoplasias da Mama , Cogumelos Shiitake , Apoptose , Autofagia , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Peptídeos
3.
Int J Mol Sci ; 19(5)2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735884

RESUMO

Malignant ascites is a highly severe and intractable complication of advanced or recurrent malignant tumors that is often immunotherapy-resistant. Rhizoma Pleionis is widely used in traditional medicine as an antimicrobial and anticancer agent, but its effectiveness in treating malignant ascites is unclear. In the current study, we investigated the effect of polysaccharides isolated from Rhizoma Pleionis (PRP) on murine hepatocarcinoma H22 cells in an ascites model. We have found that the main components of PRP, that presented a relative molecular weight of 383.57 kDa, were mannose and glucose. We also found that PRP reduced the occurrence of abdominal ascites and increased survival in our mouse model. An immune response in the ascites tumor model was observed by performing a lymphocytes proliferation experiment and an E-rosette test. The ratios of CD8+ cytotoxic T cells and NK cells in the spleen were examined by flow cytometry, and the mRNA expression of Foxp3+in CD4⁺CD25⁺ (T regulatory Tregs) was measured by RT-PCR (reverse transcription-polymerase chain reaction). The levels of the cytokines TNF-α (tumor necrosis factor), VEGF (vascular endothelial growth factor), IL-2 (interleukin), and IFN-γ (interferon) in the serum and ascites supernatants were measured by ELISA. The expression of Foxp3 and Stat3 in peritoneal cells in the mouse model was measured by immunocytochemistry. The results indicated that PRP increased H22 tumor cell apoptosis in vivo by activating and enhancing the immune response. Furthermore, the effects of PRP on the proliferation of H22 cells were assessed by the CCK8 assay, Hoechest 33258, and TUNEL staining in vitro. We found that PRP suppressed the proliferation of H22 tumor cells but had no effect on BRL (Big rat liver) -3A rat hepatoma normal cells in vitro. Next, we investigated the underlying immunological mechanism by which PRP inhibits malignant ascites. PRP induced tumor cell apoptosis by inhibiting the Jak1⁻Stat3 pathway and by activating Caspase-3 and Caspase-8 to increase the Bax/Bcl-2 ratio. Collectively, our results indicate that PRP exhibits significant antitumor properties in H22 cells in vivo and in vitro, indicating that PRP may be used as a new therapeutic drug for cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Ascite/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Orchidaceae/química , Polissacarídeos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Ascite/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/química , Rizoma/química
4.
Int J Mol Sci ; 19(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30274346

RESUMO

Present study aimed to elucidate the anticancer effect and the possible molecular mechanism underlying the action of Latcripin 1 (LP1), from the mushroom Lentinula edodes strain C91-3 against gastric cancer cell lines SGC-7901 and BGC-823. Cell viability was measured by Cell Counting Kit-8 (CCK-8); morphological changes were observed by phase contrast microscope; autophagy was determined by transmission electron microscope and fluorescence microscope. Apoptosis and cell cycle were assessed by flow cytometer; wound-healing, transwell migration and invasion assays were performed to investigate the effect of LP1 on gastric cancer cell's migration and invasion. Herein, we found that LP1 resulted in the induction of autophagy by the formation of autophagosomes and conversion of light chain 3 (LC3I into LC3II. LP1 up-regulated the expression level of autophagy-related gene (Atg7, Atg5, Atg12, Atg14) and Beclin1; increased and decreased the expression level of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) proteins respectively, along with the activation of Caspase-3. At lower-doses, LP1 have shown to arrest cells in the S phase of the cell cycle and decreased the expression level of matrix metalloproteinase MMP-2 and MMP-9. In addition, it has also been shown to regulate the phosphorylation of one of the most hampered gastric cancer pathway, that is, protein kinase B/mammalian target of rapamycin (Akt/mTOR) channel and resulted in cell death. These findings suggested LP1 as a potential natural anti-cancer agent, for exploring the gastric cancer therapies and as a contender for further in vitro and in vivo investigations.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas Fúngicas/farmacologia , Cogumelos Shiitake/química , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fase S/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Cicatrização/efeitos dos fármacos
5.
Biochem Biophys Res Commun ; 431(1): 111-5, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23266612

RESUMO

Lentinula edodes, has been utilized as food, as well as, in popular medicine, moreover, its extract isolated from its mycelium and fruiting body have shown several therapeutic properties. Yet little is understood about its genes involved in these properties, and the absence of L.edodes genomes has been a barrier to the development of functional genomics research. However, high throughput sequencing technologies are now being widely applied to non-model species. To facilitate research on L.edodes, we leveraged Solexa sequencing technology in de novo assembly of L.edodes C(91-3) transcriptome. In a single run, we produced more than 57 million sequencing reads. These reads were assembled into 28,923 unigene sequences (mean size=689bp) including 18,120 unigenes with coding sequence (CDS). Based on similarity search with known proteins, assembled unigene sequences were annotated with gene descriptions, gene ontology (GO) and clusters of orthologous group (COG) terms. Our data provides the first comprehensive sequence resource available for functional genomics studies in L.edodes, and demonstrates the utility of Illumina/Solexa sequencing for de novo transcriptome characterization and gene discovery in a non-model mushroom.


Assuntos
Genoma Fúngico/genética , Cogumelos Shiitake/genética , Transcriptoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
Int J Mol Sci ; 13(5): 6246-6265, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754362

RESUMO

An apoptosis correlated molecule-protein Latcripin-1 of Lentinula edodes C(91-3)-was expressed and characterized in Pichia pastoris GS115. The total RNA was obtained from Lentinula edodes C(91-3). According to the transcriptome, the full-length gene of Latcripin-1 was isolated with 3'-Full Rapid Amplification of cDNA Ends (RACE) and 5'-Full RACE methods. The full-length gene was inserted into the secretory expression vector pPIC9K. The protein Latcripin-1 was expressed in Pichia pastoris GS115 and analyzed by Sodium Dodecylsulfonate Polyacrylate Gel Electrophoresis (SDS-PAGE) and Western blot. The Western blot showed that the protein was expressed successfully. The biological function of protein Latcripin-1 on A549 cells was studied with flow cytometry and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-tetrazolium Bromide (MTT) method. The toxic effect of protein Latcripin-1 was detected with the MTT method by co-culturing the characterized protein with chick embryo fibroblasts. The MTT assay results showed that there was a great difference between protein Latcripin-1 groups and the control group (p < 0.05). There was no toxic effect of the characterized protein on chick embryo fibroblasts. The flow cytometry showed that there was a significant difference between the protein groups of interest and the control group according to apoptosis function (p < 0.05). At the same time, cell ultrastructure observed by transmission electron microscopy supported the results of flow cytometry. The work demonstrates that protein Latcripin-1 can induce apoptosis of human lung cancer cells A549 and brings new insights into and advantages to finding anti-tumor proteins.


Assuntos
Fibroblastos/efeitos dos fármacos , Pichia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/toxicidade , Cogumelos Shiitake/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Clonagem Molecular , Fibroblastos/citologia , Humanos , Modelos Moleculares , Filogenia , Pichia/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
7.
PLoS One ; 15(6): e0232972, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32512581

RESUMO

Various dietary fibers are considered to prevent obesity by modulating the gut microbiota. Cordyceps sinensis polysaccharide (CSP) is a soluble dietary fiber known to have protective effects against obesity and related diseases, but whether these effects induce any side effects remains unknown. The function and safety of CSP were tested in high-fat diet (HFD)-feding C57BL/6J mice. The results revealed that even though CSP supplementation could prevent an increase in body weight, it aggravated liver fibrosis and steatosis as evidenced by increased inflammation, lipid metabolism markers, insulin resistance (IR) and alanine aminotransferase (ALT) in HFD-induced obesity. 16S rDNA gene sequencing was used to analyze the gut microbiota composition, and the relative abundance of the Actinobacteria phylum, including the Olsenella genus, was significantly higher in CSP-treated mice than in HFD-fed mice. CSP supplementation may increase the proportion of Actinobacteria, which can degrade CSP. The high level of Actinobacteria aggravated the disorder of the intestinal flora and contributed to the progression from obesity to nonalcoholic steatohepatitis (NASH) and related diseases.


Assuntos
Cordyceps , Dieta Hiperlipídica/efeitos adversos , Fibras na Dieta/administração & dosagem , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polissacarídeos/administração & dosagem , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Peso Corporal , Cordyceps/metabolismo , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Polissacarídeos/isolamento & purificação
8.
Int J Med Mushrooms ; 20(12): 1163-1172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30806297

RESUMO

The recombinant protein of Latcripin-4 regulator of chromosome condensation 1 (RCC1) and ankyrin (ANK) domains were expressed and the antitumor activity of Latcripin-4 on HepG2 cells was studied. First, the Latcripin-4 transcript was selected from the medicinal mushroom Lentinus edodes C91-3 transcriptome by bioinformatics. Then the full-length gene of Latcripin-4 was isolated with 3'-full rapid amplification of cDNA ends (RACE) and 5'-full RACE methods according to the transcriptome. The RCC1 and ANK domains from the full-length gene were selected and inserted into the expression vector pET-32a (+) and expressed in Escherichia coli Rosetta-gami (DE3). Western blotting indicated that the protein was expressed successfully. The biological function of Latcripin-4 RCC1 and ANK domain protein on HepG2 cells was studied with the CCK-8 assay. All results demonstrated that Latcripin-4 RCC1 and ANK domain protein can inhibit the growth of human HepG2 liver cancer cells, which brings new insights to identifying antitumor proteins from medicinal food for cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Expressão Gênica , Cogumelos Shiitake/química , Antineoplásicos Fitogênicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Células Hep G2 , Humanos , Domínios Proteicos , Cogumelos Shiitake/genética , Cogumelos Shiitake/metabolismo
9.
J Zhejiang Univ Sci B ; 19(5): 364-371, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29732747

RESUMO

The aim of this study is to assess the antibacterial and anti-biofilm properties of the lipid extract from Mantidis ootheca against the gentamycin resistant Pseudomonas aeruginosa. The chemical composition of the lipid extract and its relative proportion were determined using the technique of gas chromatography coupled with mass spectrometry (GC-MS). Antibacterial susceptibility tests were performed using a disc diffusion assay and the minimum inhibition concentration (MIC) was determined by way of the agar dilution method. The anti-biofilm test was carried out with crystal violet staining and scanning electron microscopy (SEM). There were 16 compounds detected, and the most abundant components were sesquiterpenoids, monoterpenes, and trace aromatic compounds. The MIC for P. aeruginosa was 4 mg/ml and the eradication effect on preformed biofilms was established and compared with a ciprofloxacin control. The results of our study indicated that a lipid extract from M. ootheca could be used as a topical and antibacterial agent with anti-biofilm activity in the future.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Mantódeos , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Cromatografia Gasosa-Espectrometria de Massas , Mantódeos/química , Testes de Sensibilidade Microbiana
10.
Exp Ther Med ; 14(5): 4328-4338, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29104645

RESUMO

Pseudomonas aeruginosa is a ubiquitous Gram negative opportunistic pathogen capable of causing severe nosocomial infections in humans, and tobramycin is currently used to treat P. aeruginosa associated lung infections. Quorum sensing regulates biofilm formation which allows the bacterium to result in fatal infections forcing clinicians to extensively use antibiotics to manage its infections leading to emerging multiple drug resistant strains. As a result, tobramycin is also becoming resistant. Despite extensive studies on drug discovery to alleviate microbial drug resistance, the continued microbial evolution has forced researchers to focus on screening various phytochemicals and dietary compounds for antimicrobial potential. Linolenic acid (LNA) is an essential fatty acid that possesses antimicrobial actions on various microorganisms. It was hypothesized that LNA may affect the formation of biofilm on P. aeruginosa and improve the potency of tobramycin. The present study demonstrated that LNA interfered with cell-to-cell communication and reduced virulence factor production. It further enhanced the potency of tobramycin and synergistically inhibited biofilm formation through P. aeruginosa quorum sensing systems. Therefore, LNA may be considered as a potential agent for adjunctive therapy and its utilization may decrease tobramycin concentration in combined treatment thereby reducing aminoglycoside adverse effects.

11.
Oncol Lett ; 12(5): 3153-3160, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27899975

RESUMO

Cancer is one of the most significant health problems worldwide and thus the development of novel therapeutic agents with fewer side effects is required. The present study investigated the in vitro anticancer effects of a newly isolated fungal protein. In this study, Latcripin-15 (LP-15) regulator of chromosome condensation 1 (RCC1) domain protein, which is obtained from the Lentinula edodes C91-3 fungal strain, was identified, cloned, expressed, purified and re-folded to assess the in vitro antitumor activity of the protein. LP-15 RCC1 full-length cDNA was isolated from Lentinula edodes using 3' and 5'-rapid amplification of cDNA ends and then cloned, expressed, purified and re-folded in vitro. In addition, the effects of the isolated LP-15 RCC1 protein's functional domain on the viability and apoptosis of human lung cancer A549 cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, transmission electron microscopy, flow cytometry and Hoechst 33258 staining. The LP-15 RCC1 functional domain protein was successfully expressed, purified and re-folded in vitro. Treatment with the LP-15 RCC1 functional domain protein significantly reduced tumor cell viability and induced apoptosis in A549 cells. The results of the present study indicate that the LP-15 RCC1 functional domain requires further investigation as a novel therapeutic agent for cancer therapy.

12.
Gene ; 555(2): 469-75, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25447899

RESUMO

The shiitake mushroom Lentinula edodes has health benefits and is used to treat various diseases due to its immunomodulatory and antineoplastic properties. In the present study, the Latcripin-13 domain, isolated from L. edodes, was expressed in Escherichia coli Rosetta-gami(DE3) in the form of inclusion bodies. The Latcripin-13 domain was purified by Ni-His affinity chromatography with high purity and refolded by urea gradient dialysis. The product showed biological activity in A549 cells, a human lung cancer cell line, by flow cytometry and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method. The MTT assay and the flow cytometry results revealed that there was a great difference between the Latcripin-13 domain-treated group and the control group (p<0.05). Similarly, cell apoptosis observed by transmission electron microscopy (TEM) supported the flow cytometry results. This work demonstrated that the Latcripin-13 domain can induce apoptosis of A549 cells, which will bring new insights into the development of new antitumor drugs in the future.


Assuntos
Antineoplásicos/farmacologia , Proteínas Fúngicas/farmacologia , Cogumelos Shiitake/química , Sequência de Aminoácidos , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Clonagem Molecular , Citometria de Fluxo , Proteínas Fúngicas/química , Humanos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Neoplasias/tratamento farmacológico , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
Asian Pac J Cancer Prev ; 15(12): 5055-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24998586

RESUMO

In this study, an anti-oxidant and anti-tumor protein Latcripin-3 of Lentinula edodes C91-3 was expressed in Escherichia coli. for the first time. According to the cDNA library, the full-length gene of Latcripin-3 was cloned by the methods of 3'-full rapid amplification of cDNA Ends (RACE) and 5'-full RACE. The structural domain gene of Latcripin-3 was inserted into the pET32 a(+). The functional protein of Latcripin-3 was expressed in Rosetta-gami (DE3) E. coli, evaluated by Western blotting and mass spectrometry. DPPH testing showed that the protein Latcripin-3 can scavenge free radicals remarkably well. The activity of functional protein Latcripin-3 on A549 cells was studied with flow cytometry and the MTT method. The MTT assay results showed that there was a decreases in cell viability in a dose-dependent and time-dependent manner in protein Latcripin-3 treated groups. Flow cytometry demonstrated that Latcripin-3 can induce apoptosis and block S phase dramatically in human A549 lung cancer cells as compared to the control group. At the same time, the cell ultrastructure observed by transmission electron microscopy supported the results of flow cytometry. This research offers new insights and advantages for identifying anti-oxidant and anti-tumor proteins.


Assuntos
Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Apoptose , Proliferação de Células , Proteínas Fúngicas/metabolismo , Neoplasias Pulmonares/metabolismo , Cogumelos Shiitake/química , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Western Blotting , Ciclo Celular , Citometria de Fluxo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Humanos , Neoplasias Pulmonares/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA