Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3743-3752, 2023 Jul.
Artigo em Zh | MEDLINE | ID: mdl-37475066

RESUMO

Radiation-induced intestinal injury(RIII), a common complication of radiotherapy for pelvic malignancies, affects the quality of life and the radiotherapy efficacy for cancer. Currently, the main clinical approaches for the prevention and treatment of RIII include drug therapy, hyperbaric oxygen therapy, and surgical treatment. Among these methods, drug therapy is cost-effective. Traditional Chinese medicine(TCM) containing a variety of active components demonstrates mild side effects and good efficacy in preventing and treating RIII. Studies have proven that TCM active components, such as flavonoids, terpenoids, phenylpropanoids, and alkaloids, can protect the intestine against RIII by inhibiting oxidative stress, regulating the expression of inflammatory cytokines, modulating the mitochondrial apoptosis pathway, adjusting intestinal flora, and suppressing cell apoptosis. These mechanisms can help alleviate the symptoms of RIII. The paper aims to provide a theoretical reference for the discovery of new drugs for the prevention and treatment of RIII by reviewing the literature on TCM active components in the last 10 years.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Qualidade de Vida , Intestinos
2.
J Nat Prod ; 85(5): 1248-1255, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35500202

RESUMO

Platinum-resistant ovarian cancer is one of the most common and refractory gynecologic cancers around the world. The SENP1/JAK2 (small ubiquitin-like modifier-specific protease 1/Janus activating kinase 2) axis activation has been proposed as a critical mechanism in platinum-resistant ovarian cancer, and as such, SENP1 inhibitors become a feasible alternative to reverse platinum resistance. In this work, 29 commercially available natural ursane-type aglycones were tested for their SENP1 inhibitory activities, among which 12 aglycones showed IC50 activity at the concentration below 5 µM. Pomolic acid and tormentic acid were identified as potent SENP1 inhibitors with the IC50 values of 5.1 and 4.3 µM, respectively. The structure-activity relationship (SAR) of ursane-type SENP1 inhibitors was evaluated. A molecular docking model of the SENP1-tormentic acid complex was obtained and applied to describe the SAR. Moreover, the combinations of cisplatin with pomolic acid (IC50 = 3.69 µM, combination index (CI) = 0.23) and tormentic acid (IC50 = 2.40 µM, CI = 0.30) exhibited potent platinum-resistant reversal activities to cisplatin only (IC50 = 28.23 µM) against the human ovarian cancer SKOV3 cells. The data suggested a potential for pomolic acid and tormentic acid to be promising compounds for in vivo studies of platinum-resistant ovarian cancer with SENP1 activation.


Assuntos
Cisplatino , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisteína Endopeptidases , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/tratamento farmacológico , Relação Estrutura-Atividade , Triterpenos
3.
Pharm Biol ; 58(1): 707-715, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32726164

RESUMO

CONTEXT: Ursolic acid (UA), a natural product, shows a broad spectrum of anticancer effects. However, the poor bioavailability and efficacy of UA limit its clinical application. OBJECTIVE: We developed novel analogues of UA with enhanced antitumor activities by the extensive chemical modification of UA. MATERIALS AND METHODS: We developed multiple compounds by structural modification of UA, and found that UA232 had stronger activity than UA. The effects of UA232 (0-50 µM) on inhibiting the proliferation of A549 and H460 cells were determined by CCK-8 for 24, 48, or 72 h. The proapoptotic effect of UA232 was analyzed by microscopy and flow cytometry, and the potential signal pathway affected by UA232 was further validated by Western blotting and flow cytometry. RESULTS: Compared with UA, UA232 showed a stronger ability to inhibit the proliferation of lung cancer cells (IC50 = 5.4-6.1 µM for A549 and 3.9-5.7 µM for H460 cells). UA232 could induce not only cell cycle arrest in the G0/G1 phase but also apoptosis in both A549 and H460 cells. The treatment of UA232 could lead to an increase of CHOP expression rather than an increase in Bax or caspase-8, indicating that the apoptosis induced by UA232 was correlated with the endoplasmic reticulum stress (ER stress) pathway. Treatment with the ER stress-specific inhibitor, 4-PBA, decreased the ability of UA232 to induce apoptosis in A549 and H460 cells. CONCLUSION: UA232 induced apoptosis through the ER stress pathway, and showed stronger growth-inhibitory effects in A549 and H460 cells compared to UA, which may be a potential anticancer drug to suppress the proliferation of lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Triterpenos/farmacologia , Células A549 , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Triterpenos/administração & dosagem , Triterpenos/química , Ácido Ursólico
4.
J Ethnopharmacol ; 311: 116428, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36997130

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Irradiation-induced intestinal injury (RIII) often occurs during radiotherapy in patients, which would result in abdominal pain, diarrhea, nausea, vomiting, and even death. Engelhardia roxburghiana Wall. leaves, a traditional Chinese herb, has unique anti-inflammatory, anti-tumor, antioxidant, and analgesic effects, is used to treat damp-heat diarrhea, hernia, and abdominal pain, and has the potential to protect against RIII. AIM OF THE STUDY: To explore the protective effects of the total flavonoids of Engelhardia roxburghiana Wall. leaves (TFERL) on RIII and provide some reference for the application of Engelhardia roxburghiana Wall. leaves in the field of radiation protection. MATERIALS AND METHODS: The effect of TFERL on the survival rate of mice was observed after a lethal radiation dose (7.2 Gy) by ionizing radiation (IR). To better observe the protective effects of the TFERL on RIII, a mice model of RIII induced by IR (13 Gy) was established. Small intestinal crypts, villi, intestinal stem cells (ISC) and the proliferation of ISC were observed by haematoxylin and eosin (H&E) and immunohistochemistry (IHC). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of genes related to intestinal integrity. Superoxide dismutase (SOD), reduced glutathione (GSH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the serum of mice were assessed. In vitro, cell models of RIII induced by IR (2, 4, 6, 8 Gy) were established. Normal human intestinal epithelial cells HIEC-6 cells were treated with TFERL/Vehicle, and the radiation protective effect of TFERL on HIEC-6 cells was detected by clone formation assay. DNA damage was detected by comet assay and immunofluorescence assay. Reactive oxygen species (ROS), cell cycle and apoptosis rate were detected by flow cytometry. Oxidative stress, apoptosis and ferroptosis-related proteins were detected by western blot. Finally, the colony formation assay was used to detect the effect of TFERL on the radiosensitivity of colorectal cancer cells. RESULTS: TFERL treatment can increase the survival rate and time of the mice after a lethal radiation dose. In the mice model of RIII induced by IR, TFERL alleviated RIII by reducing intestinal crypt/villi structural damage, increasing the number and proliferation of ISC, and maintaining the integrity of the intestinal epithelium after total abdominal irradiation. Moreover, TFERL promoted the proliferation of irradiated HIEC-6 cells, and reduced radiation-induced apoptosis and DNA damage. Mechanism studies have found that TFERL promotes the expression of NRF2 and its downstream antioxidant proteins, and silencing NRF2 resulted in the loss of radioprotection by TFERL, suggesting that TFERL exerts radiation protection by activating the NRF2 pathway. Surprisingly, TFERL reduced the number of clones of colon cancer cells after irradiation, suggesting that TFERL can increase the radiosensitivity of colon cancer cells. CONCLUSION: Our data showed that TFERL inhibited oxidative stress, reduced DNA damage, reduced apoptosis and ferroptosis, and improved IR-induced RIII. This study may offer a fresh approach to using Chinese herbs for radioprotection.


Assuntos
Neoplasias do Colo , Lesões Experimentais por Radiação , Humanos , Animais , Camundongos , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/prevenção & controle , Apoptose , Diarreia , Dor Abdominal
5.
Eur J Med Chem ; 230: 114115, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033824

RESUMO

Acute kidney injury (AKI) is associated with high morbidity and mortality. Cisplatin is a common chemotherapeutic, but its nephrotoxicity-driven AKI limits its clinical application. Currently, there are no specific and satisfactory therapies in the clinic for AKI. Inhibitors of hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PHD2) or histone deacetylase (HDACs) had shown renoprotective effects against AKI in preclinical studies. This study aimed to develop a novel therapeutic to prevent AKI progression by targeting PHD2 and HDACs simultaneously. We designed and synthesized a series of PHD2/HDACs hybrid inhibitors. The initial drug activity screening identified a candidate compound 31c, which exhibited potent inhibitory activities against PHD2 and HDAC1/2/6. Cellular analyses further showed that 31c did not affect cisplatin's antitumor activity in cancer cells but strongly protected cisplatin-induced toxicity on HK-2 cells. In vivo studies with the cisplatin-induced AKI mouse model demonstrated that 31c remarkably alleviated kidney dysfunction with suppressed plasma BUN/SCr and increased EPO levels. The potent renoprotective effects of 31c on AKI were confirmed by significant improvements in pathological kidney conditions in the mouse model. These results suggest that the novel PHD2/HDACs hybrid inhibitor, 31c, has a clinical potential as the renoprotective agent for the treatment/prevention of cisplatin-induced AKI for various cancers.


Assuntos
Injúria Renal Aguda , Cisplatino , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Animais , Apoptose , Cisplatino/toxicidade , Inibidores de Histona Desacetilases/farmacologia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Rim , Camundongos , Camundongos Endogâmicos C57BL
6.
Eur J Med Chem ; 227: 113918, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34688014

RESUMO

SUMOylation and deSUMOylation plays an important role in DNA damage response and the formation of radiotherapy resistance. SENP1 is the main specific isopeptidase to catalyze deSUMOylation modification. Inhibiting SENP1 upregulates cancer cell radiosensitivity and it becomes a promising target for radiosensitization. Herein, based on the structure of ursolic acid (UA), a total of 53 pentacyclic triterpene derivatives were designed and synthesized as SENP1 inhibitors. Ten derivatives exhibited better SENP1 inhibitory activities than UA and the preliminary structure-activity relationship was discussed. Most of the UA derivatives were low-cytotoxic, among which compound 36 showed the best radiosensitizing activity with the SER value of 1.45. It was the first study to develop small molecular SENP1 inhibitors as radiosensitizers.


Assuntos
Antineoplásicos/farmacologia , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas , Triterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química , Ácido Ursólico
7.
Cancer Lett ; 530: 100-109, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065237

RESUMO

Acidic nucleoplasmic DNA binding protein 1 (AND-1, also known as WD repeat and HMG-box DNA-binding protein 1, WDHD1) plays an important role in DNA replication and repair, but the relationship between AND-1 and radiosensitivity is not well understood. This research explored the impact of AND-1 on the radiosensitivity of non-small cell lung cancer (NSCLC) for the first time. NSCLC cells were treated with AND-1 siRNA or a new AND-1 inhibitor, CH-3, and clonogenic survival assay was used to characterize cell radiosensitivity. Cell cycle and apoptosis were examined by flow cytometry. DNA damage was detected by comet assay, immunofluorescence, and homologous recombination (HR) repair assay. Finally, the radiosensitization effect of CH-3 was investigated in vivo in a xenograft tumor model. The results showed that AND-1 inhibition significantly increased the radiosensitivity of NSCLC cells. Mechanistically, AND-1 inhibitor (CH-3) induced G2/M phase arrest by regulating the ATM signaling pathway and enhanced irradiation-induced DNA damage by inhibiting the DNA HR repair pathway. CH-3 enhanced the radiosensitivity of NSCLC cells in vivo. The development of radiosensitizers that target AND-1 may provide an alternative strategy to inhibit NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Ligação a DNA/genética , Neoplasias Pulmonares/genética , Células A549 , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Dano ao DNA/genética , Reparo do DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Tolerância a Radiação/genética
8.
Int J Biol Sci ; 18(6): 2639-2651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35414766

RESUMO

Due to increased drug and radiation tolerance, there is an urgent need to develop novel anticancer agents. In our previous study, we performed a series of structural modifications of ursolic acid (UA), a natural product of pentacyclic triterpenes, and found UA232, a derivative with stronger anti-tumor activity. In vitro experiments showed that UA232 inhibited proliferation, induced G0/G1 arrest, and promoted apoptosis in human breast cancer and cervical cancer cells. Mechanistic studies revealed that UA232 promoted apoptosis and induced protective autophagy via the protein kinase R-like endoplasmic reticulum kinase/activating transcription factor 4/C/EBP homologous protein-mediated endoplasmic reticulum stress. In addition, we also found that UA232 induced lysosomal biogenesis, increased lysosomal membrane permeability, promoted lysosomal protease release, and led to lysosome-dependent cell death. Furthermore, UA232 suppressed tumor growth in a mouse xenograft model. In conclusion, our study revealed that UA232 exerts multiple pharmacological effects against breast and cervical cancers by simultaneously triggering endoplasmic reticulum stress and lysosomal dysfunction. Thus, UA232 may be a promising drug candidate for cancer treatment.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Lisossomos , Camundongos , Triterpenos , Ácido Ursólico
9.
Sci Rep ; 11(1): 24328, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934053

RESUMO

The phosphate group functionalized metal-organic frameworks (MOFs) as the adsorbent for removal of U(VI) from aqueous solution still suffer from low adsorption efficiency, due to the low grafting rate of groups into the skeleton structure. Herein, a novel phosphate group functionalized metal-organic framework nanoparticles (denoted as Fe3O4@SiO2@UiO-66-TPP NPs) designed and prepared by the chelation between Zr and phytic acid, showing fast adsorption rate and outstanding selectivity in aqueous media including 10 coexisting ions. The Fe3O4@SiO2@UiO-66-TPP was properly characterized by TEM, FT-IR, BET, VSM and Zeta potential measurement. The removal performance of Fe3O4@SiO2@UiO-66-TPP for U(VI) was investigated systematically using batch experiments under different conditions, including solution pH, incubation time, temperature and initial U(VI) concentration. The adsorption kinetics, isotherm, selectivity studies revealed that Fe3O4@SiO2@UiO-66-TPP NPs possess fast adsorption rates (approximately 15 min to reach equilibrium), high adsorption capacities (307.8 mg/g) and outstanding selectivity (Su = 94.4%) towards U(VI), which in terms of performance are much better than most of the other magnetic adsorbents. Furthermore, the adsorbent could be reused for U(VI) removal without obvious loss of adsorption capacity after five consecutive cycles. The research work provides a novel strategy to assemble phosphate group-functionalized MOFs.

10.
ACS Omega ; 6(1): 1004, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458553

RESUMO

[This corrects the article DOI: 10.1021/acsomega.0c01244.].

11.
ACS Omega ; 5(31): 19446-19452, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803038

RESUMO

An improved five-step synthesis of triethylene glycol-substituted 4-(N-methyl-N-Boc-amino)styrylpyridine (6) is described. Using cost-effective starting materials, the developed synthesis route was synthetic, efficient, and chromatographic purification-free. The key point of the work is the one-pot synthesis of tert-butyl methyl(4-vinylphenyl)carbamate through methylation and elimination in the NaH/THF system. The new synthesis route shows the potential to achieve scaled-up preparation of 6 in the future.

12.
Eur J Med Chem ; 181: 111552, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31387063

RESUMO

Tyrosine kinase inhibitors (TKIs) have achieved substantial clinical effects for cancer treatment while causing a number of adverse effects. Since hypoxia is an intrinsic difference between solid tumor and healthy tissues, one strategy to overcome the adverse effects of TKIs is to enhance the specificity of anti-tumor activity by selectively targeting hypoxic region of tumors. Herein, we designed and synthesized a series of novel 4-anilinoquinazoline derivatives by introducing 3-nitro-1,2,4-triazole group to the side chain of vandetanib with modification of aniline moiety. Lead compounds, 10a and 10g, exhibited potent inhibitory activity against EGFR and VEGFR-2 kinase. Moreover, these two compounds were shown to enhance anti-proliferative activities on A549 and H446 cells under hypoxic conditions compared to vandetanib and dramatically down-regulate VEGF gene expression. In vivo studies confirmed that 10a and 10g not only inhibited tumor growth in A549 xenografts of BALB/c-nu mice but also significantly reduce toxicity associated with weight loss compared to vandetanib. These results suggest that EGFR/VEGFR-2 dual inhibitors, 10a and 10g, emerged as potential hypoxia-selective anti-tumor drugs with less toxicity for inhibiting in vitro and in vivo models of non-small cell lung cancer cells.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Compostos de Anilina/síntese química , Compostos de Anilina/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Expert Opin Investig Drugs ; 28(10): 917-930, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31430206

RESUMO

Introduction: Acetyl-CoA Carboxylase (ACC) is an essential rate-limiting enzyme in fatty acid metabolism. For many years, ACC inhibitors have gained great attention for developing therapeutics for various human diseases including microbial infections, metabolic syndrome, obesity, diabetes, and cancer. Areas covered: We present a comprehensive review and update of ACC inhibitors. We look at the current advance of ACC inhibitors in clinical studies and the implications in drug discovery. We searched ScienceDirect ( https://www.sciencedirect.com/ ), ACS ( https://pubs.acs.org/ ), Wiley ( https://onlinelibrary.wiley.com/ ), NCBI ( https://www.ncbi.nlm.nih.gov/ ) and World Health Organization ( https://www.who.int/ ). The keywords used were Acetyl-CoA Carboxylase, lipid, inhibitors and metabolic syndrome. All documents were published before June 2019. Expert opinion: The key regulatory role of ACC in fatty acid synthesis and oxidation pathways makes it an attractive target for various metabolic diseases. In particular, the combination of ACC inhibitors with other drugs is a new strategy for the treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Expanding the clinical indications for ACC inhibitors will be one of the hot directions in the future. It is also worth looking forward to exploring safe and efficient inhibitors that act on the BC domain of ACC.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Síndrome Metabólica/tratamento farmacológico , Acetil-CoA Carboxilase/metabolismo , Animais , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/efeitos adversos , Ácidos Graxos/metabolismo , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/fisiopatologia , Síndrome Metabólica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA