Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7950): 56-61, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859579

RESUMO

Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.

2.
Nature ; 581(7807): 171-177, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405019

RESUMO

Two-dimensional (2D) materials1-5 offer a unique platform from which to explore the physics of topology and many-body phenomena. New properties can be generated by filling the van der Waals gap of 2D materials with intercalants6,7; however, post-growth intercalation has usually been limited to alkali metals8-10. Here we show that the self-intercalation of native atoms11,12 into bilayer transition metal dichalcogenides during growth generates a class of ultrathin, covalently bonded materials, which we name ic-2D. The stoichiometry of these materials is defined by periodic occupancy patterns of the octahedral vacancy sites in the van der Waals gap, and their properties can be tuned by varying the coverage and the spatial arrangement of the filled sites7,13. By performing growth under high metal chemical potential14,15 we can access a range of tantalum-intercalated TaS(Se)y, including 25% Ta-intercalated Ta9S16, 33.3% Ta-intercalated Ta7S12, 50% Ta-intercalated Ta10S16, 66.7% Ta-intercalated Ta8Se12 (which forms a Kagome lattice) and 100% Ta-intercalated Ta9Se12. Ferromagnetic order was detected in some of these intercalated phases. We also demonstrate that self-intercalated V11S16, In11Se16 and FexTey can be grown under metal-rich conditions. Our work establishes self-intercalation as an approach through which to grow a new class of 2D materials with stoichiometry- or composition-dependent properties.

3.
Appl Opt ; 63(3): 804-809, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294394

RESUMO

Accurate determination of scan positions is essential for achieving high-quality reconstructions in ptychographic imaging. This study presents and demonstrates a method for determining the rotation angle of the scan pattern relative to the detector pixel array using diffraction data. The method is based on the Fourier-Mellin transform and cross-correlation calculation. It can correct rotation errors up to 60 deg. High-quality reconstructions were obtained for visible light and electron microscopy datasets, and intricate structures of samples can be revealed. We believe that this refinement method for rotary position errors can be valuable for improving the performance of ptychographic four-dimensional scanning transmission electron microscopy.

4.
Nano Lett ; 23(4): 1298-1305, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779843

RESUMO

An atomic-scale ripple structure has been revealed by electron tomography based on sequential projected atomic-resolution images, but it requires harsh imaging conditions with negligible structure evolution of the imaged samples. Here, we demonstrate that the ripple structure in monolayer MoSe2 can be facilely reconstructed from a single-frame scanning transmission electron microscopy (STEM) image collected at designated collection angles. The intensity and shape of each Se2 atomic column in the single-frame projected STEM image are synergistically combined to precisely map the slight misalignments of two Se atoms induced by rippling, which is then converted to three-dimensional (3D) ripple distortions. The dynamics of 3D ripple deformation can thus be directly visualized at the atomic scale by sequential STEM imaging. In addition, the reconstructed images provide the first opportunity for directly testing the validity of the classical theory of thermal fluctuations. Our method paves the way for a 3D reconstruction of a dynamical process in two-dimensional materials with a reasonable temporal resolution.

5.
Small ; 18(4): e2104043, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846781

RESUMO

The electrocatalytic nitrogen reduction reaction (NRR) provides a promising strategy to convert the abundant but inert N2 into NH3 using renewable energy. Herein, single-atom Au isolated onto bicontinous nanoporous MoSe2 (np-MoSe2 ) is designed as an electrocatalyst for achieving highly efficient NRR catalysis, which exhibits a high Faradaic efficiency (FE) of 37.82% and an NH3 production rate of 30.83 µg h-1 mg-1 at -0.3 V versus a reversible hydrogen electrode (RHE) in 0.1 m Na2 SO4 under ambient conditions. Experimental and theoretical investigations reveal that the introduction of single Au atoms onto np-MoSe2 optimizes the adsorption of NRR intermediates while suppressing the competing HER, thus providing an energetic-favorable process for enhancing the catalytic selectivity toward electrochemical N2 reduction into NH3 .


Assuntos
Nanoporos , Nitrogênio , Catálise , Ouro
6.
Microsc Microanal ; : 1-11, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35260221

RESUMO

Accurate geometrical calibration between the scan coordinates and the camera coordinates is critical in four-dimensional scanning transmission electron microscopy (4D-STEM) for both quantitative imaging and ptychographic reconstructions. For atomic-resolved, in-focus 4D-STEM datasets, we propose a hybrid method incorporating two sub-routines, namely a J-matrix method and a Fourier method, which can calibrate the uniform affine transformation between the scan-camera coordinates using raw data, without a priori knowledge of the crystal structure of the specimen. The hybrid method is found robust against scan distortions and residual probe aberrations. It is also effective even when defects are present in the specimen, or the specimen becomes relatively thick. We will demonstrate that a successful geometrical calibration with the hybrid method will lead to a more reliable recovery of both the specimen and the electron probe in a ptychographic reconstruction. We will also show that, although the elimination of local scan position errors still requires an iterative approach, the rate of convergence can be improved, and the residual errors can be further reduced if the hybrid method can be firstly applied for initial calibration. The code is made available as a simple-to-use tool to correct affine transformations of the scan-camera coordinates in 4D-STEM experiments.

7.
Nano Lett ; 21(7): 2946-2952, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33759536

RESUMO

The flexoelectric effect, which manifests itself as a strain-gradient-induced electrical polarization, has triggered great interest due to its ubiquitous existence in crystalline materials without the limitation of lattice symmetry. Here, we propose a flexoelectric photodetector based on a thin-film heterostructure. This prototypical device is demonstrated by epitaxial LaFeO3 thin films grown on LaAlO3 substrates. A giant strain gradient of the order of 106/m is achieved in LaFeO3 thin films, giving rise to an obvious flexoelectric polarization and generating a significant photovoltaic effect in the LaFeO3-based heterostructures with nanosecond response under light illumination. This work not only demonstrates a novel self-powered photodetector different from the traditional interface-type structures, such as the p-n and Schottky junctions but also opens an avenue to design practical flexoelectric devices for nanoelectronics applications.

8.
Nano Lett ; 21(7): 3262-3270, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33749268

RESUMO

Twisting the angle between van der Waals stacked 2D layers has recently sparked great interest as a new strategy to tune the physical properties of the materials. The twist angle and associated strain profiles govern the electrical and optical properties of the twisted 2D materials, but their detailed atomic structures remain elusive. Herein, using combined atomic-resolution electron microscopy and density functional theory (DFT) calculations, we identified five unique types of moiré features in commensurately twisted 7a×7a transition metal dichalcogenide (TMD) bilayers. These stacking variants are distinguishable only when the moiré wavelength is short. Periodic lattice strain is observed in various commensurately twisted TMD bilayers. Assisted by Zernike polynomial as a hierarchical active-learning framework, a hexagon-shaped strain soliton network has been atomically unveiled in nearly commensurate twisted TMD bilayers. Unlike stacking-polytype-dependent properties in untwisted structures, the stacking variants have the same electronic structures that suggest twisted bilayer systems are invariant against interlayer gliding.

9.
Opt Express ; 29(24): 40652-40667, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809400

RESUMO

High degree of coherence is essential in coherent diffraction imaging (CDI). The coherence requirement on the light source varies with the experimental configuration. As a scanning variant of CDI, ptychography has shown great potential for extensive applications. To determine the influence of partially temporal and spatial coherence on near- and far-field ptychography, we have performed a series of numerical simulations and visible light optical experiments. We demonstrated that the near-field is more robust to spatial and temporal decoherence than the far-field. In addition, the far-field is found to be more sensitive to spatial decoherence than to temporal decoherence. Our experiments also show that a known probe estimate with good spatial coherence enables the retrieval qualities to be enhanced dramatically and helps prevent falling into the local minimums in the reconstruction process. Our work would provide a valuable reference for implementing ptychography with sources of limited coherence.

10.
J Am Chem Soc ; 142(9): 4472-4480, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32056433

RESUMO

Covalent organic frameworks (COFs) are a promising category of porous materials possessing extensive chemical tunability, high porosity, ordered arrangements at a molecular level, and considerable chemical stability. Despite these advantages, the application of COFs as membrane materials for gas separation is limited by their relatively large pore apertures (typically >0.5 nm), which exceed the sieving requirements for most gases whose kinetic diameters are less than 0.4 nm. Herein, we report the fabrication of ultrathin two-dimensional (2D) membranes through layer-by-layer (LbL) assembly of two kinds of ionic covalent organic nanosheets (iCONs) with different pore sizes and opposite charges. Because of the staggered packing of iCONs with strong electrostatic interactions, the resultant membranes exhibit features of reduced aperture size, optimized stacking pattern, and compact dense structure without sacrificing thickness control, which are suitable for molecular sieving gas separation. One of the hybrid membranes, TpEBr@TpPa-SO3Na with a thickness of 41 nm, shows a H2 permeance of 2566 gas permeation units (GPUs) and a H2/CO2 separation factor of 22.6 at 423 K, surpassing the recent Robeson upper bound along with long-term hydrothermal stability. This strategy provides not only a high-performance H2 separation membrane candidate but also an inspiration for pore engineering of COF or 2D porous polymer membranes.

11.
Nano Lett ; 18(10): 6157-6163, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30207733

RESUMO

Interface segregation is a powerful approach to tailor properties of bulk materials by interface engineering. Nevertheless, little is known about the chemical inhomogeneity at interfaces of polymorphic two-dimensional transition metal dichalcogenides (TMDs) and its influence on the properties of the 2D materials. Here we report one-dimensional monatomic segregation at coherent semiconductor-metal 1H/1T interfaces of Mo-doped WS2 monolayers. The monatomic interface segregation takes place at an intact transition metal plane and is associated with the topological defects caused by reflection symmetry breaking at the 1T/1H interfaces and the weak difference in bonding strength between Mo-S and W-S. This finding enriches our understanding of the interaction between topological defects and impurities in 2D crystals and enlightens a potential approach to manipulate the properties of 2D TMDs by local chemical modification and interface engineering for applications in 2D TMD electronic devices.

12.
Nano Lett ; 16(4): 2240-7, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26986876

RESUMO

Despite many theoretical predictions indicating exceptionally low energy barriers of ionic transport in phosphorene, the ionic transport pathways in this two-dimensional (2D) material has not been experimentally demonstrated. Here, using in situ aberration-corrected transmission electron microscopy (TEM) and density functional theory, we studied sodium ion transport in phosphorene. Our high-resolution TEM imaging complemented by electron energy loss spectroscopy demonstrates a precise description of anisotropic sodium ions migration along the [100] direction in phosphorene. This work also provides new insight into the effect of surface and the edge sites on the transport properties of phosphorene. According to our observation, the sodium ion transport is preferred in zigzag edge rather than the armchair edge. The use of this highly selective ionic transport property may endow phosphorene with new functionalities for novel chemical device applications.

13.
Adv Mater ; : e2402628, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670114

RESUMO

A new nanoporous amorphous carbon (NAC) structure that achieves both ultrahigh strength and high electrical conductivity, which are usually incompatible in porous materials is reported. By using modified spark plasma sintering, three amorphous carbon phases with different atomic bonding configurations are created. The composite consisted of an amorphous sp2-carbon matrix mixed with amorphous sp3-carbon and amorphous graphitic motif. NAC structure has an isotropic electrical conductivity of up to 12 000 S m-1, Young's modulus of up to ≈5 GPa, and Vickers hardness of over 900 MPa. These properties are superior to those of existing conductive nanoporous materials. Direct investigation of the multiscale structure of this material through transmission electron microscopy, electron energy loss spectroscopy, and machine learning-based electron tomography revealed that the origin of the remarkable material properties is the well-organized sp2/sp3 amorphous carbon phases with a core-shell-like architecture, where the sp3-rich carbon forms a resilient core surrounded by a conductive sp2-rich layer. This research not only introduces novel materials with exceptional properties but also opens new opportunities for exploring amorphous structures and designing high-performance materials.

14.
Ultramicroscopy ; 248: 113716, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958156

RESUMO

Correcting scan-positional errors is critical in achieving electron ptychography with both high resolution and high precision. This is a demanding and challenging task due to the sheer number of parameters that need to be optimized. For atomic-resolution ptychographic reconstructions, we found classical refining methods for scan positions not satisfactory due to the inherent entanglement between the object and scan positions, which can produce systematic errors in the results. Here, we propose a new protocol consisting of a series of constrained gradient descent (CGD) methods to achieve better recovery of scan positions. The central idea of these CGD methods is to utilize a priori knowledge about the nature of STEM experiments and add necessary constraints to isolate different types of scan positional errors during the iterative reconstruction process. Each constraint will be introduced with the help of simulated 4D-STEM datasets with known positional errors. Then the integrated constrained gradient decent (iCGD) protocol will be demonstrated using an experimental 4D-STEM dataset of the 1H-MoS2 monolayer. We will show that the iCGD protocol can effectively address the errors of scan positions across the spectrum and help to achieve electron ptychography with high accuracy and precision.

15.
ACS Nano ; 17(3): 2450-2459, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36716185

RESUMO

Self-intercalation of native magnetic atoms within the van der Waals (vdW) gap of layered two-dimensional (2D) materials provides a degree of freedom to manipulate magnetism in low-dimensional systems. Among various vdW magnets, the vanadium telluride is an interesting system to explore the interlayer order-disorder transition of magnetic impurities due to its flexibility in taking nonstoichiometric compositions. In this work, we combine high-resolution scanning transmission electron microscopy (STEM) analysis with density functional theory (DFT) calculations and magnetometry measurements, to unveil the local atomic structure and magnetic behavior of V-rich V1+xTe2 nanoplates with embedded V3Te4 nanoclusters grown by chemical vapor deposition (CVD). The segregation of V intercalations locally stabilizes the self-intercalated V3Te4 magnetic phase, which possesses a distorted 1T'-like monoclinic structure. This phase transition is controlled by the electron doping from the intercalant V ions. The magnetic hysteresis loops show that the nanoplates exhibit superparamagnetism, while the temperature-dependent magnetization curves evidence a collective superspin-glass magnetic behavior of the nanoclusters at low temperature. Using four-dimensional (4D) STEM diffraction imaging, we reveal the formation of collective diffuse magnetic domain structures within the sample under the high magnetic fields inside the electron microscope. Our results shed light on the studies of dilute magnetism at the 2D limit and on strategies for the manipulation of magnetism for spintronic applications.

16.
Sci Adv ; 8(15): eabk1005, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417228

RESUMO

Characterizing materials to atomic resolution and first-principles structure-property prediction are two pillars for accelerating functional materials discovery. However, we are still lacking a rapid, noise-robust framework to extract multilevel atomic structural motifs from complex materials to complement, inform, and guide our first-principles models. Here, we present a machine learning framework that rapidly extracts a hierarchy of complex structural motifs from atomically resolved images. We demonstrate how such motif hierarchies can rapidly reconstruct specimens with various defects. Abstracting complex specimens with simplified motifs enabled us to discover a previously unidentified structure in a Mo─V─Te─Nb polyoxometalate (POM) and quantify the relative disorder in a twisted bilayer MoS2. In addition, these motif hierarchies provide statistically grounded clues about the favored and frustrated pathways during self-assembly. The motifs and their hierarchies in our framework coarse-grain disorder in a manner that allows us to understand a much broader range of multiscale samples with functional imperfections and nontrivial topological phases.

17.
iScience ; 24(12): 103456, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34888499

RESUMO

Point defects in 1T″ anisotropic ReSe2 offer many possibilities for defect engineering, which could endow this two-dimensional semiconductor with new functionalities, but have so far received limited attention. Here, we systematically investigate a full spectrum of point defects in ReSe2, including vacancies (VSe1-4), isoelectronic substitutions (OSe1-4 and SSe1-4), and antisite defects (SeRe1-2 and ReSe1-4), by atomic-scale electron microscopy imaging and density functional theory (DFT) calculations. Statistical counting reveals a diverse density of various point defects, which are further elaborated by the formation energy calculations. Se vacancy dynamics was unraveled by in-situ electron beam irradiation. DFT calculations reveal that vacancies at Se sites notably introduce in-gap states, which are largely quenched upon isoelectronic substitutions (O and S), whereas antisite defects introduce localized magnetic moments. These results provide atomic-scale insight of atomic defects in 1T″-ReSe2, paving the way for tuning the electronic structure of anisotropic ReSe2 via defect engineering.

18.
Nat Commun ; 12(1): 2841, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990584

RESUMO

Traditional strategies for improving piezoelectric properties have focused on phase boundary engineering through complex chemical alloying and phase control. Although they have been successfully employed in bulk materials, they have not been effective in thin films due to the severe deterioration in epitaxy, which is critical to film properties. Contending with the opposing effects of alloying and epitaxy in thin films has been a long-standing issue. Herein we demonstrate a new strategy in alkali niobate epitaxial films, utilizing alkali vacancies without alloying to form nanopillars enclosed with out-of-phase boundaries that can give rise to a giant electromechanical response. Both atomically resolved polarization mapping and phase field simulations show that the boundaries are strained and charged, manifesting as head-head and tail-tail polarization bound charges. Such charged boundaries produce a giant local depolarization field, which facilitates a steady polarization rotation between the matrix and nanopillars. The local elastic strain and charge manipulation at out-of-phase boundaries, demonstrated here, can be used as an effective pathway to obtain large electromechanical response with good temperature stability in similar perovskite oxides.

19.
Science ; 371(6531): 830-834, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602853

RESUMO

Thermoelectric technology generates electricity from waste heat, but one bottleneck for wider use is the performance of thermoelectric materials. Manipulating the configurational entropy of a material by introducing different atomic species can tune phase composition and extend the performance optimization space. We enhanced the figure of merit (zT) value to 1.8 at 900 kelvin in an n-type PbSe-based high-entropy material formed by entropy-driven structural stabilization. The largely distorted lattices in this high-entropy system caused unusual shear strains, which provided strong phonon scattering to largely lower lattice thermal conductivity. The thermoelectric conversion efficiency was 12.3% at temperature difference ΔT = 507 kelvin, for the fabricated segmented module based on this n-type high-entropy material. Our demonstration provides a paradigm to improve thermoelectric performance for high-entropy thermoelectric materials through entropy engineering.

20.
Adv Mater ; 32(46): e2004055, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33058319

RESUMO

Although 2D layered metal compounds are widely exploited using various techniques such as exfoliation and vapor-phase-assisted growth, it is still challenging to construct the 2D materials in a 3D configuration with preservation of the unique physicochemical properties of the metal compounds. Herein, a general synthetic strategy is reported for a wide variety of 2D (atomic-scale thickness) metal compounds with 3D bicontinous nanoporous structure. 19 binary compounds including sulfides, selenides, tellurides, carbides, and nitrides, and five alloyed compounds, are successfully prepared via a surface alloy strategy, which are readily created by using a recyclable nanoporous gold assisted chemical vapor deposition process. These 3D nanoporous metal compounds with preserved 2D physicochemical properties, tunable pore sizes, and compositions for electrocatalytic applications, show excellent catalytic performance in the electrochemical N2 reduction reaction. This work opens up a promising avenue for fundamental studies and potential applications of a wide variety of nanoporous metal compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA