Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7846): 504-508, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536620

RESUMO

Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Nucleares/metabolismo , Animais , Biocatálise , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Feminino , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Metilação , Camundongos , Modelos Moleculares , Mutação , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Appl Environ Microbiol ; 90(1): e0162523, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38168668

RESUMO

Many Acinetobacter species can grow on n-alkanes of varying lengths (≤C40). AlmA, a unique flavoprotein in these Acinetobacter strains, is the only enzyme proven to be required for the degradation of long-chain (LC) n-alkanes, including C32 and C36 alkanes. Although it is commonly presumed to be a terminal hydroxylase, its role in n-alkane degradation remains elusive. In this study, we conducted physiological, biochemical, and bioinformatics analyses of AlmA to determine its role in n-alkane degradation by Acinetobacter baylyi ADP1. Consistent with previous reports, gene deletion analysis showed that almA was vital for the degradation of LC n-alkanes (C26-C36). Additionally, enzymatic analysis revealed that AlmA catalyzed the conversion of aliphatic 2-ketones (C10-C16) to their corresponding esters, but it did not conduct n-alkane hydroxylation under the same conditions, thus suggesting that AlmA in strain ADP1 possesses Baeyer-Villiger monooxygenase (BVMO) activity. These results were further confirmed by bioinformatics analysis, which revealed that AlmA was closer to functionally identified BVMOs than to hydroxylases. Altogether, the results of our study suggest that LC n-alkane degradation by strain ADP1 possibly follows a novel subterminal oxidation pathway that is distinct from the terminal oxidation pathway followed for short-chain n-alkane degradation. Furthermore, our findings suggest that AlmA catalyzes the third reaction in the LC n-alkane degradation pathway.IMPORTANCEMany microbial studies on n-alkane degradation are focused on the genes involved in short-chain n-alkane (≤C16) degradation; however, reports on the genes involved in long-chain (LC) n-alkane (>C20) degradation are limited. Thus far, only AlmA has been reported to be involved in LC n-alkane degradation by Acinetobacter spp.; however, its role in the n-alkane degradation pathway remains elusive. In this study, we conducted a detailed characterization of AlmA in A. baylyi ADP1 and found that AlmA exhibits Baeyer-Villiger monooxygenase activity, thus indicating the presence of a novel LC n-alkane biodegradation mechanism in strain ADP1.


Assuntos
Acinetobacter , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Alcanos/metabolismo , Oxirredução , Acinetobacter/genética
3.
Appl Environ Microbiol ; 90(6): e0143623, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38709097

RESUMO

Rieske non-heme dioxygenase family enzymes play an important role in the aerobic biodegradation of nitroaromatic pollutants, but no active dioxygenases are available in nature for initial reactions in the degradation of many refractory pollutants like 2,4-dichloronitrobenzene (24DCNB). Here, we report the engineering of hotspots in 2,3-dichloronitrobenzene dioxygenase from Diaphorobacter sp. strain JS3051, achieved through molecular dynamic simulation analysis and site-directed mutagenesis, with the aim of enhancing its catalytic activity toward 24DCNB. The computationally predicted activity scores were largely consistent with the detected activities in wet experiments. Among them, the two most beneficial mutations (E204M and M248I) were obtained, and the combined mutant reached up to a 62-fold increase in activity toward 24DCNB, generating a single product, 3,5-dichlorocatechol, which is a naturally occurring compound. In silico analysis confirmed that residue 204 affected the substrate preference for meta-substituted nitroarenes, while residue 248 may influence substrate preference by interaction with residue 295. Overall, this study provides a framework for manipulating nitroarene dioxygenases using computational methods to address various nitroarene contamination problems.IMPORTANCEAs a result of human activities, various nitroaromatic pollutants continue to enter the biosphere with poor degradability, and dioxygenation is an important kickoff step to remove toxic nitro-groups and convert them into degradable products. The biodegradation of many nitroarenes has been reported over the decades; however, many others still lack corresponding enzymes to initiate their degradation. Although rieske non-heme dioxygenase family enzymes play extraordinarily important roles in the aerobic biodegradation of various nitroaromatic pollutants, prediction of their substrate specificity is difficult. This work greatly improved the catalytic activity of dioxygenase against 2,4-dichloronitrobenzene by computer-aided semi-rational design, paving a new way for the evolution strategy of nitroarene dioxygenase. This study highlights the potential for using enzyme structure-function information with computational pre-screening methods to rapidly tailor the catalytic functions of enzymes toward poorly biodegradable contaminants.


Assuntos
Dioxigenases , Nitrobenzenos , Dioxigenases/metabolismo , Dioxigenases/genética , Dioxigenases/química , Nitrobenzenos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Biodegradação Ambiental , Mutagênese Sítio-Dirigida , Simulação de Dinâmica Molecular
4.
Appl Environ Microbiol ; 90(3): e0224223, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38358247

RESUMO

The extensive accumulation of polyethylene terephthalate (PET) has become a critical environmental issue. PET hydrolases can break down PET into its building blocks. Recently, we identified a glacial PET hydrolase GlacPETase sharing less than 31% amino acid identity with any known PET hydrolases. In this study, the crystal structure of GlacPETase was determined at 1.8 Å resolution, revealing unique structural features including a distinctive N-terminal disulfide bond and a specific salt bridge network. Site-directed mutagenesis demonstrated that the disruption of the N-terminal disulfide bond did not reduce GlacPETase's thermostability or its catalytic activity on PET. However, mutations in the salt bridges resulted in changes in melting temperature ranging from -8°C to +2°C and the activity on PET ranging from 17.5% to 145.5% compared to the wild type. Molecular dynamics simulations revealed that these salt bridges stabilized the GlacPETase's structure by maintaining their surrounding structure. Phylogenetic analysis indicated that GlacPETase represented a distinct branch within PET hydrolases-like proteins, with the salt bridges and disulfide bonds in this branch being relatively conserved. This research contributed to the improvement of our comprehension of the structural mechanisms that dictate the thermostability of PET hydrolases, highlighting the diverse characteristics and adaptability observed within PET hydrolases.IMPORTANCEThe pervasive problem of polyethylene terephthalate (PET) pollution in various terrestrial and marine environments is widely acknowledged and continues to escalate. PET hydrolases, such as GlacPETase in this study, offered a solution for breaking down PET. Its unique origin and less than 31% identity with any known PET hydrolases have driven us to resolve its structure. Here, we report the correlation between its unique structure and biochemical properties, focusing on an N-terminal disulfide bond and specific salt bridges. Through site-directed mutagenesis experiments and molecular dynamics simulations, the roles of the N-terminal disulfide bond and salt bridges were elucidated in GlacPETase. This research enhanced our understanding of the role of salt bridges in the thermostability of PET hydrolases, providing a valuable reference for the future engineering of PET hydrolases.


Assuntos
Hidrolases , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Filogenia , Estabilidade Enzimática , Hidrolases/metabolismo , Dissulfetos , Temperatura
5.
J Exp Bot ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126211

RESUMO

The endoplasmic reticulum (ER) is crucial for maintaining cell homeostasis because it is the primary site for synthesizing secreted and transmembrane proteins and lipids. The unfolded protein response (UPR) is activated to restore ER homeostasis under ER stress. However, the relationship between lipids and the ER stress response in plants is not well understood. Arabidopsis Golgi anti-apoptotic proteins (GAAPs) are involved in resisting ER stress. To elucidate the function of GAAPs, PASTICCINO2 (PAS2), involved in very long-chain fatty acid (VLCFA) synthesis, was found to interact with GAAPs and IRE1. Single pas2 and gaap1/gaap2pas2 double mutants exhibited increased seedling damage and impaired UPR response under chronic ER stress. Site mutation combined with genetic analysis revealed that the role of PAS2 in resisting ER stress depended on its VLCFA synthesis domain. VLCFA contents were upregulated under ER stress, which required GAAPs. Exogenous VLCFAs partially restored the defect in UPR upregulation caused by PAS2 or GAAP mutations under chronic ER stress. These findings demonstrate that the association of PAS2 with GAAPs confers plant resistance to ER stress by regulating VLCFA synthesis and the UPR. This provides a basis for further studies on the connection between lipids and cell fate decisions under stress.

6.
Stem Cells ; 41(4): 328-340, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36640125

RESUMO

Given the increasing popularity of electronic cigarettes (e-cigs), it is imperative to evaluate the potential health risks of e-cigs, especially in users with preexisting health concerns such as pulmonary arterial hypertension (PAH). The aim of the present study was to investigate whether differential susceptibility exists between healthy and patients with PAH to e-cig exposure and the molecular mechanisms contributing to it. Patient-specific induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from healthy individuals and patients with PAH were used to investigate whether e-cig contributes to the pathophysiology of PAH and affects EC homeostasis in PAH. Our results showed that PAH iPSC-ECs showed a greater amount of damage than healthy iPSC-ECs upon e-cig exposure. Transcriptomic analyses revealed that differential expression of Akt3 may be responsible for increased autophagic flux impairment in PAH iPSC-ECs, which underlies increased susceptibility upon e-cig exposure. Moreover, knockdown of Akt3 in healthy iPSC-ECs significantly induced autophagic flux impairment and endothelial dysfunction, which further increased with e-cig treatment, thus mimicking the PAH cell phenotype after e-cig exposure. In addition, functional disruption of mTORC2 by knocking down Rictor in PAH iPSC-ECs caused autophagic flux impairment, which was mediated by downregulation of Akt3. Finally, pharmacological induction of autophagy via direct inhibition of mTORC1 and indirect activation of mTORC2 with rapamycin reverses e-cig-induced decreased Akt3 expression, endothelial dysfunction, autophagic flux impairment, and decreased cell viability, and migration in PAH iPSC-ECs. Taken together, these data suggest a potential link between autophagy and Akt3-mediated increased susceptibility to e-cig in PAH.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Células-Tronco Pluripotentes Induzidas , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Células Endoteliais/metabolismo , Autofagia , Células-Tronco Pluripotentes Induzidas/fisiologia
7.
Chemistry ; 30(40): e202400537, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38703390

RESUMO

With the popularization of 5G technology and artificial intelligence, thermally conductive epoxies with self-healing ability will be widely used in flexible electronic materials. Although many compounds containing both performances have been synthesized, there is little systematic theory to explain the coordination mechanism. In this paper, alkyl chains of different lengths were introduced to epoxies to discuss the thermally conductive, the self-healing performance, and the synergistic effect. A series of electronic-grade biphenyl epoxies (4,4'-bis(oxiran-2-ylmethoxy)-1,1'-biphenyl (1), 4,4'-bis(2-(oxiran-2-yl)ethoxy)-1,1'-biphenyl (2), 4,4'-bis(3-(oxiran-2-yl)propoxy)-1,1'-biphenyl (3), and 4,4'-bis(4-(oxiran-2-yl)butoxy)-1,1'-biphenyl (4) were synthesized and characterized. Furthermore, they were cured with decanedioic acid to produce polymers. Results showed that alkyl chains can both affect the two properties, and the epoxies suitable for specific application scenarios can be prepared by adjusting the length of alkyl chains. In terms of thermal conductivity, compound 1 was a most promising material. However, compound 4 was expected to be utilized in flexible electronic devices because of its acceptable thermal conductivity, self-healing ability, transparency, and flexibility.

8.
J Org Chem ; 89(17): 12559-12575, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39189641

RESUMO

The catalytic atroposelective synthesis of N-N axially chiral indolylamides was established via dynamic kinetic resolution, which makes use of chiral Lewis base-catalyzed asymmetric acylation of N-acylaminoindoles as a new type of platform molecule with anhydrides. By this strategy, a series of N-N axially chiral indolylamides were synthesized in overall good yields (up to 98%) with excellent enantioselectivities (up to 99% ee). Moreover, some of these N-N axially chiral indolylamides display some extent of anticancer activity, which demonstrates their potential application in medicinal chemistry. Therefore, this work has not only provided a new strategy for the synthesis of N-N axially chiral monoaryl indoles but also offered a new member of N-N axially chiral monoaryl indoles with configurational stability and promising application, thereby solving the challenges in atroposelective synthesis and application of N-N axially chiral monoaryl indoles.

9.
BMC Infect Dis ; 24(1): 1088, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354354

RESUMO

BACKGROUND: Heart rate is crucial for patients with septic shock, but there are few studies on the scope of heart rate. Therefore, we studied the relationship between different heart rates and mortality of critically ill patients with septic shock, and explored the optimal heart rate range, in order to provide new insights for clinical treatment of septic shock. METHODS: This retrospective study utilized time-series heart rate data from the Medical Information Mart for Intensive Care (MIMIC) IV database. Patients with septic shock were identified as the Sepsis 3.0 criteria and received vasopressor therapy in the first 24 h since ICU admission. We calculated the time-weighted average heart rate (TWA-HR) based on the time-series data. The restricted cubic spline (RCS) analysis was employed to investigate the nonlinear relationship between heart rate and 28-day mortality, aiming to explore the optimal heart rate control target for septic patients and using this target as the exposure factor. The primary outcome was 28-day mortality, and the secondary outcome were ICU and in-hospital mortality. For the original cohort, we applied the log-rank test to infer the relationship between heart rate and mortality. To control for bias introduced by confounders, we utilized propensity score matching (PSM) to reduce imbalances between normal TWA-HR and high TWA-HR groups, and we established a series of models [the multivariable Cox model, matching weight (MW)-adjusted Cox model, multivariable logistic regression, MW-adjusted logistic regression, and doubly robust model] as sensitivity analyses and subgroup analyses to demonstrate the robustness of our findings. RESULTS: A total of 13492 patients were included in our study. The RCS analysis based on Cox and logistic regression showed increased risk of mortality (P < 0.001, non-linear P < 0.001) when TWA-HR > 85 beats per minute (bpm). The log-rank test revealed in terms of the 28-day mortality, the hazard ratio (HR) (95% confidence interval [CI]) was 1.92 (1.78-2.06, P < 0.001) for patients with high TWA-HR compared to normal TWA-HR group. Similarly, for the ICU mortality, the HR (95% CI) was 1.64 (1.52-1.78, P < 0.001), and for the in-hospital mortality, the HR (95% CI) was 1.61 (1.48-1.76, P < 0.001). Collectively, the sensitivity analysis consistently demonstrated higher 28-day mortality, ICU mortality, and in-hospital mortality in patients with TWA-HR > 85 bpm. CONCLUSION: Patients with septic shock whose heart rate was controlled no more than 85 bpm during ICU stay received survival benefit in terms of 28-day, ICU and in-hospital mortality. .


Assuntos
Frequência Cardíaca , Mortalidade Hospitalar , Unidades de Terapia Intensiva , Choque Séptico , Humanos , Choque Séptico/mortalidade , Choque Séptico/fisiopatologia , Masculino , Frequência Cardíaca/fisiologia , Feminino , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Unidades de Terapia Intensiva/estatística & dados numéricos , Estado Terminal/mortalidade , Idoso de 80 Anos ou mais
10.
BMC Infect Dis ; 24(1): 1083, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354398

RESUMO

BACKGROUND: The relationship between the dynamic changes in insulin resistance (IR) and the prognosis of septic patients remains unclear. This study aims to investigate the correlation between the clinical subphenotype of IR represented by the triglyceride-glucose (TyG) index trajectory and the mortality rate among patients with sepsis. METHODS: In this retrospective cohort study, we utilized data from septic patients within the Medical Information Mart for Intensive Care (MIMIC)-IV database version 2.0 to construct trajectories of the TyG index over 72 h. Subsequently, we computed the similarity among various TyG index trajectories with the dynamic time warping (DTW) algorithm and utilized the hierarchical clustering (HC) algorithm to demarcate distinct cluster and identified subphenotypes according to the trajectory trend. Subsequently, we assessed the mortality risk between different subphenotypes using analyses such as survival analysis and validated the robustness of the results through propensity score matching (PSM) and various models. RESULTS: A total of 2350 patients were included in the study. Two trajectory trends: TyG index decreasing (n = 926) and TyG index increasing (n = 1424) were identified, which indicated corresponding to the clinical subphenotype of increased and alleviative IR respectively. The 28-day and in-hospital mortality for the increased IR group was 28.51% and 25.49% respectively. In comparison, patients in the alleviative IR group with a 28-day mortality of 23.54% and an in-hospital mortality of 21.60%. These subphenotypes exhibited distinct prognosis, time dependent Cox model showed the increased IR group with a higher 28-day mortality [hazard ratio (HR): 1.07, 95% confidence interval (CI): 1.02-1.12, P = 0.01] and in-hospital mortality [HR: 1.05, 95% CI: 1.00-1.11, P = 0.045] compared to the alleviative IR group. Sensitivity analyses with various models further validated the robustness of our findings. CONCLUSION: Dynamic increase in the TyG index trajectory is associated with elevated mortality risk among patients with sepsis, which suggests that dynamic increased IR exacerbates the risk of poor outcomes in patients.


Assuntos
Glicemia , Mortalidade Hospitalar , Resistência à Insulina , Sepse , Triglicerídeos , Humanos , Sepse/mortalidade , Sepse/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Triglicerídeos/sangue , Idoso , Glicemia/análise , Prognóstico , Análise de Sobrevida
11.
Acta Haematol ; : 1-8, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824913

RESUMO

INTRODUCTION: Acute promyelocytic leukemia (APL) is genetically characterized by the fusion of promyelocytic leukemia (PML) gene with retinoic acid receptor alpha (RARα) resulting from a t(15;17)(q24;q21) chromosomal translocation. An infrequent but recurrent finding in APL is the formation of an isochromosome of the derivative chromosome 17; ider(17)(q10)t(15;17) or ider(17q). This rearrangement in APL results in an additional copy of the PML-RARα fusion gene as well as loss of 17p/TP53. Due to the infrequent occurrence of the ider(17q), the prognostic impact of this genetic finding is not well known. Case Presentation(s): Here, we describe the clinical characteristics and outcomes of our case series of 5 patients with ider(17q) APL treated at the University of Maryland and Johns Hopkins University. CONCLUSION: In our series, patients with APL with ider(17q) did not have a worse prognosis.

12.
Oral Dis ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623870

RESUMO

OBJECTIVES: The splicing factor transformer-2 homolog beta (Tra2ß) plays a pivotal role in various cancers. Nonetheless, its role in oral squamous cell carcinoma (OSCC) has not been comprehensively explored. This study sought to discern the influence of Tra2ß on OSCC and its underlying mechanisms. MATERIALS AND METHODS: We assessed Tra2ß expression in OSCC utilizing immunohistochemistry, qRT-PCR, and western blotting techniques. siRNA transfection was used to silence Tra2ß. Whole transcriptome RNA sequencing (RNA-seq) analysis was carried out to reveal the alternative splicing (AS) events. KEGG pathway analysis enriched the related pathways. Colony formation, transwell, wound healing, and Annexin V-FITC/PI were employed to appraise the consequences of Tra2ß silencing on OSCC. RESULTS: Tra2ß was highly expressed in both OSCC tissues and cell lines. Knockdown of Tra2ß-regulated AS events with skipped exon (SE) accounts for the highest proportion. Meanwhile, downregulation of Tra2ß reduced cell proliferation, migration, and invasion, however increasing cell apoptosis. Moreover, Wnt signaling pathway involved in the function of Tra2ß knockdown which was demonstrated directly by a discernible reduction in the expression of GSK3/ß-catenin signaling axis. CONCLUSIONS: These findings suggest that knockdown of Tra2ß may exert anti-tumor effects through the GSK3/ß-catenin signaling pathway in OSCC.

13.
Ecotoxicol Environ Saf ; 282: 116709, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024943

RESUMO

Biofilms, intricate microbial communities that attach to surfaces, especially medical devices, form an exopolysaccharide matrix, which enables bacteria to resist environmental pressures and conventional antimicrobial agents, leading to the emergence of multi-drug resistance. Biofilm-related infections associated with medical devices are a significant public health threat, compromising device performance. Therefore, developing effective methods for supervising and managing biofilm growth is imperative. This in-depth review presents a systematic overview of strategies for monitoring and controlling bacterial biofilms. We first outline the biofilm creation process and its regulatory mechanisms. The discussion then progresses to advancements in biosensors for biofilm detection and diverse treatment strategies. Lastly, this review examines the obstacles and new perspectives associated with this domain to facilitate the advancement of innovative monitoring and control solutions. These advancements are vital in combating the spread of multi drug-resistant bacteria and mitigating public health risks associated with infections from biofilm formation on medical instruments.


Assuntos
Biofilmes , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Técnicas Biossensoriais/métodos , Equipamentos e Provisões/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla
14.
Ecotoxicol Environ Saf ; 283: 116793, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094453

RESUMO

Biomass-related airborne fine particulate matter (PM2.5) is an important risk factor for chronic obstructive pulmonary disease (COPD). Macrophage polarization has been reported to be involved in PM2.5-induced COPD, but the dynamic characteristics and underlying mechanism of this process remain unclear. Our study established a PM2.5-induced COPD mouse model and revealed that M2 macrophages predominantly presented after 4 and 6 months of PM2.5 exposure, during which a notable increase in MMP12 was observed. Single cell analysis of lung tissues from COPD patients and mice further revealed that M2 macrophages were the dominant macrophage subpopulation in COPD, with MMP12 being involved as a hub gene. In vitro experiments further demonstrated that PM2.5 induced M2 polarization and increased MMP12 expression. Moreover, we found that PM2.5 increased IL-4 expression, STAT6 phosphorylation and nuclear translocation. Nuclear pSTAT6 then bound to the MMP12 promoter region. Furthermore, the inhibition of STAT6 phosphorylation effectively abrogated the PM2.5-induced increase in MMP12. Using a coculture system, we observed a significantly reduced level of E-cadherin in alveolar epithelial cells cocultured with PM2.5-exposed macrophages, while the decrease in E-cadherin was reversed by the addition of an MMP12 inhibitor to the co-culture system. Taken together, these findings indicated that PM2.5 induced M2 macrophage polarization and MMP12 upregulation via the IL-4/STAT6 pathway, which resulted in alveolar epithelial barrier dysfunction and excessive extracellular matrix (ECM) degradation, and ultimately led to COPD progression. These findings may help to elucidate the role of macrophages in COPD, and suggest promising directions for potential therapeutic strategies.


Assuntos
Interleucina-4 , Macrófagos , Metaloproteinase 12 da Matriz , Material Particulado , Doença Pulmonar Obstrutiva Crônica , Fator de Transcrição STAT6 , Regulação para Cima , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Metaloproteinase 12 da Matriz/metabolismo , Animais , Material Particulado/toxicidade , Fator de Transcrição STAT6/metabolismo , Camundongos , Macrófagos/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade
15.
J Formos Med Assoc ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423923

RESUMO

We presented the development of a consensus guideline for managing juvenile idiopathic arthritis-associated uveitis (JIAU) in Taiwan, considering regional differences in manifestation and epidemiology. The Taiwan Ocular Inflammation Society (TOIS) committee formulated this guideline using a modified Delphi approach with two panel meetings. Recommendations were based on a comprehensive evidence-based literature review and expert clinical experiences, and were graded according to the Oxford Centre for Evidence-Based Medicine's "Levels of Evidence" guideline (March 2009). The TOIS consensus guideline consists of 10 recommendations in four categories: screening and diagnosis, treatment, complications, and monitoring, covering a total of 27 items. These recommendations received over 75% agreement from the panelists. Early diagnosis and a coordinated referral system between ophthalmologists and pediatric rheumatologists are crucial to prevent irreversible visual impairment in children with JIAU. However, achieving a balance between disease activity and medication use remains a key challenge in JIAU management, necessitating further clinical studies.

16.
Aesthetic Plast Surg ; 48(11): 2190-2196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38429528

RESUMO

BACKGROUND: There are serious complications associated with hyaluronic acid (HA) facial injections, including vision impairment due to retinal artery ischemia. In this study, we put forth a clinically relevant model of retinal ischemia and reperfusion in rabbit. We used this to verify the efficacy of hyaluronidase intra-artery thrombolysis in the treatment of hyaluronic acid-induced retinal artery occlusion. METHODS: Retinal artery ischemia was induced by injecting HA into the ophthalmic artery (OA) of adult chinchilla rabbit, and reperfusion was achieved by intra-artery thrombolysis therapy with hyaluronidase following 60 min and 4 h of occlusion. Digital subtraction angiography (DSA) and fundus fluorescein angiography (FFA) were used to evaluate blood flow in the retina. Electroretinogram (ERG), hematoxylin and eosin staining and transmission electron microscope were used to evaluate the structure and function of the retina after ischemia and reperfusion following 60 min and 4 h of occlusion. RESULTS: DSA and FFA images confirmed occlusion of the ophthalmic and central retinal arteries, as well as reperfusion after hyaluronidase thrombolysis. ERG indicated retinal dysfunction following ischemia, and thrombolysis partially rescued its impairment following 4 h of occlusion. Hematoxylin and eosin staining and TUNEL staining revealed ischemia-induced histological damages in the retina at different time windows, and hyaluronidase thrombolysis partially mitigated these damages. CONCLUSIONS: We report a method to establish a HA-induced retinal artery occlusion animal model. Hyaluronidase intra-artery thrombolysis was used to recanalize the embolized OA at different time points. Using our method, we achieved retinal reperfusion, and an improvement was observed in the visual function of rabbits after hyaluronidase thrombolysis following 4 h of occlusion. We believe that hyaluronidase intra-artery thrombolysis is an effective method to treat HA-induced retinal artery occlusion in clinic. LEVEL OF EVIDENCE II: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Modelos Animais de Doenças , Ácido Hialurônico , Hialuronoglucosaminidase , Oclusão da Artéria Retiniana , Terapia Trombolítica , Animais , Coelhos , Oclusão da Artéria Retiniana/tratamento farmacológico , Oclusão da Artéria Retiniana/induzido quimicamente , Hialuronoglucosaminidase/uso terapêutico , Hialuronoglucosaminidase/administração & dosagem , Ácido Hialurônico/administração & dosagem , Terapia Trombolítica/métodos , Angiofluoresceinografia/métodos , Eletrorretinografia , Artéria Oftálmica , Angiografia Digital , Masculino
17.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542214

RESUMO

Our research focuses on expression patterns in human and mouse embryonic cardiomyocytes and endothelial cells at the single-cell level. We analyzed single-cell datasets containing different species, cardiac chambers, and cell types. We identified developmentally dynamic genes associated with different cellular lineages in the heart and explored their expression and possible roles during cardiac development. We used dynamic time warping, a method that aligns temporal sequences, to compare these developmental stages across two species. Our results indicated that atrial cardiomyocytes from E9.5 to E13.5 in mice corresponded to a human embryo age of approximately 5-6 weeks, whereas in ventricular cardiomyocytes, they corresponded to a human embryo age of 13-15 weeks. The endothelial cells in mouse hearts corresponded to 6-7-week-old human embryos. Next, we focused on expression changes in cardiac transcription factors over time in different species and chambers, and found that Prdm16 might be related to interspecies cardiomyocyte differences. Moreover, we compared the developmental trajectories of cardiomyocytes differentiated from human pluripotent stem cells and embryonic cells. This analysis explored the relationship between their respective developments and provided compelling evidence supporting the relevance of our dynamic time-warping results. These significant findings contribute to a deeper understanding of cardiac development across different species.


Assuntos
Células Endoteliais , Miócitos Cardíacos , Humanos , Animais , Camundongos , Lactente , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Embrião de Mamíferos , Átrios do Coração/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675622

RESUMO

IRAK4 is a critical mediator in NF-κB-regulated inflammatory signaling and has emerged as a promising therapeutic target for the treatment of autoimmune diseases; however, none of its inhibitors have received FDA approval. In this study, we identified a novel small-molecule IRAK4 kinase inhibitor, DW18134, with an IC50 value of 11.2 nM. DW18134 dose-dependently inhibited the phosphorylation of IRAK4 and IKK in primary peritoneal macrophages and RAW264.7 cells, inhibiting the secretion of TNF-α and IL-6 in both cell lines. The in vivo study demonstrated the efficacy of DW18134, significantly attenuating behavioral scores in an LPS-induced peritonitis model. Mechanistically, DW18134 reduced serum TNF-α and IL-6 levels and attenuated inflammatory tissue injury. By directly blocking IRAK4 activation, DW18134 diminished liver macrophage infiltration and the expression of related inflammatory cytokines in peritonitis mice. Additionally, in the DSS-induced colitis model, DW18134 significantly reduced the disease activity index (DAI) and normalized food and water intake and body weight. Furthermore, DW18134 restored intestinal damage and reduced inflammatory cytokine expression in mice by blocking the IRAK4 signaling pathway. Notably, DW18134 protected DSS-threatened intestinal barrier function by upregulating tight junction gene expression. In conclusion, our findings reported a novel IRAK4 inhibitor, DW18134, as a promising candidate for treating inflammatory diseases, including peritonitis and IBD.


Assuntos
Doenças Inflamatórias Intestinais , Quinases Associadas a Receptores de Interleucina-1 , Peritonite , Animais , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos , Peritonite/tratamento farmacológico , Peritonite/induzido quimicamente , Células RAW 264.7 , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Citocinas/metabolismo , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL
19.
Medicina (Kaunas) ; 60(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38256358

RESUMO

This is a case report of Epstein-Barr virus (EBV) uveitis confirmed via aqueous humor polymerase chain reaction (PCR) and metagenomics. This 72-year-old male with a history of diabetes and herpes zoster complained of redness and blurred vision in his right eye for eight months. Mild conjunctival injection, anterior chamber cells, mutton-fat keratic precipitates, and vitreous haze were noted. Fluorescein angiography revealed dye leakage from retinal vessels without retinal ischemic changes. Only the serum anti-cytomegalovirus (CMV) IgG was positive while the aqueous humor PCR for VZV (Varicella-zoster virus), HSV (Herpes simplex viruses), CMV, and EBV was initially negative. Inflammation recurred and vitreous haze worsened after discontinuing nine-month topical ganciclovir and oral prednisolone. the aqueous humor PCR was repeated due to persistent low-grade inflammation. The EBV PCR turned out to be positive. Shotgun metagenomics revealed 1459 classified sequences (1.62%) and confirmed the EBV infection. Topical ganciclovir and methylprednisolone treatment was resumed. Conjunctival injection improved while pigmented keratic precipitates lessened. Elderly patients with diabetes or under immunosuppression may be susceptible to chronic uveitis associated with subsequent EBV infection. Repeated aqueous humor PCR and shotgun metagenomics are important tools in the diagnosis of this case of chronic indolent panuveitis.


Assuntos
Infecções por Citomegalovirus , Diabetes Mellitus , Infecções por Vírus Epstein-Barr , Uveíte , Idoso , Masculino , Humanos , Herpesvirus Humano 4 , Humor Aquoso , Uveíte/diagnóstico , Uveíte/tratamento farmacológico , Inflamação , Anticorpos Antivirais , Ganciclovir/uso terapêutico , Reação em Cadeia da Polimerase
20.
Medicina (Kaunas) ; 60(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38792893

RESUMO

Background and Objectives: The risks of uveitis development among pediatric patients with Down syndrome (DS) remain unclear. Therefore, we aimed to determine the risk of uveitis following a diagnosis of DS. Materials and Methods: This multi-institutional retrospective cohort study utilized the TriNetX database to identify individuals aged 18 years and younger with and without a diagnosis of DS between 1 January 2000 and 31 December 2023. The non-DS cohort consisted of randomly selected control patients matched by selected variables. This included gender, age, ethnicity, and certain comorbidities. The main outcome is the incidence of new-onset uveitis. Statistical analysis of the uveitis risk was reported using hazard ratios (HRs) and 95% confidence intervals (CIs). Separate analyses of the uveitis risk among DS patients based on age groups and gender were also performed. Results: A total of 53,993 individuals with DS (46.83% female, 58.26% white, mean age at index 5.21 ± 5.76 years) and 53,993 non-DS individuals (45.56% female, 58.28% white, mean age at index 5.21 ± 5.76 years) were recruited from the TriNetX database. Our analysis also showed no overall increased risk of uveitis among DS patients (HR: 1.33 [CI: 0.89-1.99]) compared to the non-DS cohort across the 23-year study period. Subgroup analyses based on different age groups showed that those aged 0-1 year (HR: 1.36 [CI: 0.68-2.72]), 0-5 years (HR: 1.34 [CI: 0.75-2.39]), and 6-18 years (HR: 1.15 [CI: 0.67-1.96]) were found to have no association with uveitis risk compared to their respective non-DS comparators. There was also no increased risk of uveitis among females (HR: 1.49 [CI: 0.87-2.56]) or males (HR: 0.82 [CI: 0.48-1.41]) with DS compared to their respective non-DS comparators. Conclusions: Our study found no overall increased risk of uveitis following a diagnosis of DS compared to a matched control population.


Assuntos
Síndrome de Down , Uveíte , Humanos , Síndrome de Down/complicações , Masculino , Feminino , Uveíte/epidemiologia , Uveíte/diagnóstico , Uveíte/etiologia , Criança , Estudos Retrospectivos , Pré-Escolar , Adolescente , Lactente , Bases de Dados Factuais , Incidência , Estudos de Coortes , Fatores de Risco , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA