Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6519, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174512

RESUMO

Cathepsin C (CatC) is an enzyme which regulates the maturation of neutrophil serine proteases (NSPs) essential for neutrophil activation. Activated neutrophils are key players in the innate immune system, and are also implicated in the etiology of various inflammatory diseases. This study aims to demonstrate a therapeutic potential for CatC inhibitors against disorders in which activated neutrophil-derived neutrophil extracellular traps (NETs) play a significant role. We demonstrate that a CatC inhibitor, MOD06051, dose-dependently suppresses the cellular activity of NSPs, including neutrophil elastase (NE), in vitro. Neutrophils derived from MOD06051-administered rats exhibit significantly lower NE activity and NET-forming ability than controls. Furthermore, MOD06051 dose-dependently ameliorates vasculitis and significantly decreases NETs when administered to a rat model of myeloperoxidase (MPO)-antineutrophil cytoplasmic antibody-associated vasculitis (AAV). These findings suggest that CatC inhibition is a promising strategy to reduce neutrophil activation and improve activated neutrophil-mediated diseases such as MPO-AAV.


Assuntos
Catepsina C , Armadilhas Extracelulares , Elastase de Leucócito , Ativação de Neutrófilo , Neutrófilos , Peroxidase , Catepsina C/metabolismo , Catepsina C/antagonistas & inibidores , Animais , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Ativação de Neutrófilo/efeitos dos fármacos , Humanos , Ratos , Elastase de Leucócito/metabolismo , Elastase de Leucócito/antagonistas & inibidores , Masculino , Peroxidase/metabolismo , Peroxidase/antagonistas & inibidores , Serina Proteases/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia
2.
Lupus Sci Med ; 10(2)2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38154828

RESUMO

OBJECTIVES: Methylprednisolone (mPSL) pulse therapy is an essential option for patients with active systemic lupus erythematosus, but there is a risk of adverse events related to microcirculation disorders, including idiopathic osteonecrosis of the femoral head (ONFH). Recent studies have revealed that excessive neutrophil extracellular traps (NETs) are involved in microcirculation disorders. This study aimed to demonstrate that mPSL pulse could induce NETs in lupus mice and identify the factors contributing to this induction. METHODS: Six mice with imiquimod (IMQ)-induced lupus-like disease and six normal mice were intraperitoneally injected with mPSL on days 39 to 41, and five mice with IMQ-induced lupus-like disease and six normal mice were injected with phosphate-buffered saline. Pathological examinations were conducted to evaluate the ischaemic state of the femoral head and tissue infiltration of NET-forming neutrophils. Proteome analysis was performed to extract plasma proteins specifically elevated in mPSL-administered mice with IMQ-induced lupus-like disease, and their effects on NET formation were assessed in vitro. RESULTS: Mice with IMQ-induced lupus-like disease that received mPSL pulse demonstrated ischaemia of the femoral head cartilage with tissue infiltration of NET-forming neutrophils. Proteome analysis suggested that prenylcysteine oxidase 1 (PCYOX1) played a role in this phenomenon. The reaction of PCYOX1-containing very low-density lipoproteins (VLDL) with its substrate farnesylcysteine (FC) induced NETs in vitro. The combined addition of IMQ and mPSL synergistically enhanced VLDL-plus-FC-induced NET formation. CONCLUSION: PCYOX1 and related factors are worthy of attention to understand the underlying mechanisms and create novel therapeutic strategies for mPSL-mediated microcirculation disorders, including ONFH.


Assuntos
Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Camundongos , Humanos , Animais , Metilprednisolona/uso terapêutico , Metilprednisolona/metabolismo , Metilprednisolona/farmacologia , Cabeça do Fêmur/patologia , Imiquimode/metabolismo , Imiquimode/farmacologia , Imiquimode/uso terapêutico , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Proteoma/metabolismo , Proteoma/farmacologia , Cartilagem , Isquemia/metabolismo , Isquemia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA