Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Opt Express ; 30(3): 4058-4070, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209651

RESUMO

Detailed spectral analysis of radiation absorption and scattering behaviors of metasurfaces was carried out via finite-difference time-domain (FDTD) photonic simulations. It revealed that, for typical metal-insulator-metal (MIM) nanodisc metasurfaces, absorbance and scattering cross-sections exhibit a ratio of σabs/σsca = 1 at the absorption peak spectral position. This relationship was likewise found to limit the attainable photo-thermal conversion efficiency in experimental and application contexts. By increasing the absorption due to optical materials, such as Cr metal nano-films typically used as an adhesion layer, it is possible to control the total absorption efficiency η = σabs/σsca and to make it the dominant extinction mechanism. This guided the design of MIM metasurfaces tailored for near-perfect-absorption and emission of thermal radiation. We present the fabrication as well as the numerical and experimental spectral characterisation of such optical surfaces.

2.
Anal Chem ; 93(43): 14448-14453, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668693

RESUMO

The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid-liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path. As a result, estimating the DOD-dependent rate-determining factor of LIBs is difficult. In contrast, in micro/nanoscale electrochemical measurements, the primary or secondary particle is evaluated without using a conductive additive and providing an ideal mass transport condition. To control the DOD state of a single LiFePO4 active material and evaluate the DOD-dependent charge transfer kinetic parameters, we use scanning electrochemical cell microscopy (SECCM), which uses a micropipette to form an electrochemical cell on a sample surface. The difference in charge transfer resistance at the solid-liquid interface depending on the DOD state and electrolyte solution could be confirmed using SECCM.

3.
Opt Express ; 28(17): 25383-25391, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907060

RESUMO

Formation of metal hydrides is a signature chemical property of hydrogen and it can be leveraged to enact both storage and detection of this technologically important yet extremely volatile gas. Palladium shows particular promise as a hydrogen storage medium as well as a platform for creating rapid and reliable H2 optical sensor devices. Furthermore, alloying Pd with other noble metals provides a technologically simple yet powerful way of enacting control over the structural and catalytic properties of the resultant material. Similarly, in addition to alloying, different top-down and bottom-up Pd nanostructuring methods have been proposed and investigated specifically for creating optical H2 sensors. In this work it was determined that the hydrogen sensing ability of a series of Pd-Au alloy films could be improved by way of a hydrogen over exposure (HOE) treatment. Structural investigation showed that the HOE treatment, in addition to irreversibly altering the film morphology, results in a 1 to 2% expansion in the lattice constant of the metal. By combining a cyclic HOE treatment and alloy aging through annealing, the hydrogen detection sensitivity and response rates of Pd-Au films could be stabilized so that their performance would no longer be appreciably affected by repeated hydrogen uptake and release cycles. This work takes a further step towards routine all-optical detection of part-per-million level hydrogen gas concentrations in Pd-Au alloy films and discussion of ways to enhance response rates is provided.

4.
Opt Express ; 28(11): 16012-16026, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549433

RESUMO

The self-organised conical needles produced by plasma etching of silicon (Si), known as black silicon (b-Si), create a form-birefringent surface texture when etching of Si orientated at angles of θi < 50 - 70° (angle between the Si surface and vertical plasma E-field). The height of the needles in the form-birefringent region following 15 min etching was d ∼ 200 nm and had a 100 µm width of the optical retardance/birefringence, characterised using polariscopy. The height of the b-Si needles corresponds closely to the skin-depth of Si ∼λ/4 for the visible spectral range. Reflection-type polariscope with a voltage-controlled liquid-crystal retarder is proposed to directly measure the retardance Δn × d/λ ≈ 0.15 of the region with tilted b-Si needles. The quantified form birefringence of Δn = -0.45 over λ = 400 - 700 nm spectral window was obtained. Such high values of Δn at visible wavelengths can only be observed in the most birefringence calcite or barium borate as well as in liquid crystals. The replication of b-Si into Ni-shim with high fidelity was also demonstrated and can be used for imprinting of the b-Si nanopattern into other materials.

5.
J Comput Chem ; 40(8): 925-932, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30368857

RESUMO

First principles electrodyanmics and quantum chemical simulations are performed to gain insights into the underlying mechanisms of the surface enhanced Raman spectra of 22BPY adsorbed on pure Au and Ag as well as on Au-Ag alloy nanodiscs. Experimental SERS spectra from Au and Ag nanodiscs show similar peaks, whereas those from Au-Ag alloy reveal new spectral features. The physical enhancement factors due to surface nano-texture were considered by numerical FDTD simulations of light intensity distribution for the nano-textured Au, Ag, and Au-Ag alloy and compared with experimental results. For the chemical insights of the enhancement, the DFT calculations with the dispersion interaction were performed using Au20 , Ag20 , and Au10 Ag10 clusters of a pyramidal structure for SERS modeling. Binding of 22BPY to the clusters was simulated by considering possible arrangements of vertex and planar physical as well as chemical adsorption models. The DFT results indicate that 22BPY prefers a coplanar adsorption on a (111) face with trans-conformation having close energy difference to cis-conformation. Binding to pure Au cluster is stronger than to pure Ag or Au-Ag alloy clusters and adsorption onto the alloy surface can deform the surface. The computed Raman spectra are compared with experimental data and assignments for pure Au and Ag models are well matching, indicating the need of dispersion interaction to reproduce strong Raman signal at around 800 cm-1 . This work provides insight into 3D character of SERS on nanorough surfaces due to different binding energies and bond length of nanoalloys. © 2018 Wiley Periodicals, Inc.

6.
Sensors (Basel) ; 20(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877934

RESUMO

Hydrogen gas has attracted attention as a new energy carrier, and simple but highly sensitive hydrogen sensors are required. We fabricated an optical hydrogen sensor based on a silicon microring resonator (MRR) with tungsten oxide (WO3) using a complementary metal-oxide-semiconductor (CMOS)-compatible process for the MRR and a sol-gel method for the WO3 layer and investigated its sensing characteristics at device temperatures of 5, 20, and 30 °C. At each temperature, a hydrogen concentration of as low as 0.1 vol% was successfully detected. The gas sensitivity increased with decreasing temperature. The dependence of the sensitivity on the device temperature can be attributed to the thickness of tungsten bronze (HxWO3) formed by WO3 during exposure to hydrogen gas. In addition, a hydrogen gas sensor based on a silicon-MRR-enhanced Mach-Zehnder interferometer (MRR-MZI) is proposed and its significantly high sensing ability using improved changes in the transmittance of light is theoretically discussed.

7.
Opt Express ; 25(20): 24469-24479, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041391

RESUMO

In general, biochemical sensors based on photonic cavities are used to detect changes in the refractive index of the environment. In this study, however, a GaInAsP semiconductor photonic-crystal nanolaser sensor that we recently developed was found to detect not only the environmental refractive index but also the surface charge. In contrast to the pH sensitivity we reported previously, this is an ultra-sensitive detection mechanism capable of identifying proteins and deoxyribonucleic acids (DNA) at a femtomolar-order or lower concentrations. When the device is exposed to plasma or DNA solutions, the laser wavelength simultaneously changes with the zeta potential and the flat-band potential of the semiconductor surface. This indicates that the charged functional groups on the surface, which are formed by these treatments, modify the Schottky barrier near the semiconductor surface, trap the excited carriers in the barrier, and change the refractive index of the semiconductor via the carrier effects. These findings also suggest that some other photonic sensors may also exhibit similar electrochemical and optoelectronic effects.

8.
Opt Express ; 25(20): 24081-24092, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041355

RESUMO

For hydrogen sensor and storage applications, films of Au and Pd were (i) co-sputtered at different rates or (ii) deposited in a sequentially alternating fashion to create a layered structure on a cover glass. Peculiarities of hydrogen uptake and release were optically monitored using 1.3 µm wavelength light. Increase of optical transmission was observed for hydrogenated Pd-rich films of 10-30 nm thickness. Up to a three times slower hydrogen release took place as compared with the hydrogen uptake. Compositional ratio of Au:Pd and thermal treatment of films provided control over the optical extinction changes and hydrogen uptake/release time constants. Higher uptake and release rates were observed in the annealed Au:Pd films as compared to those deposited at room temperature and were faster for the Auricher films. Three main parameters relevant for sensors: sensitivity, selectivity, stability (reproducibility) are discussed together with the hydrogenation mechanism in Au:Pd alloys.

9.
Opt Express ; 23(13): 17056-66, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191714

RESUMO

We proposed and demonstrated a label-free imaging method for living cells using a GaInAsP H0-type photonic crystal nanolaser array. We integrated 441 nanolasers in an arrayed configuration and achieved photopumped lasing with a 100% yield. Then, we attached HeLa cells on it, measured the wavelengths of all nanolasers and used them as pixel information. We acquired cell images, which partially corresponds to optical micrographs and probably reflects the attachment condition of the cells. We improved the refractive index resolution from ~10(-2) to 2 × 10(-3) by incorporating a nanoslot into each nanolaser and compensating the nonuniformity of each index sensitivity.

10.
Opt Express ; 21(11): 13502-14, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736603

RESUMO

Surface enhanced Raman scattering (SERS) was measured on periodic and randomly arranged patterns of Au nano-bricks (rectangular parallelepipeds). Resonant SERS conditions were investigated of a near-IR dye deposited on nanoparticles. Random mixtures of Au nano-bricks with different aspect ratio R showed stronger SERS enhancement as compared to periodic patterns with constant aspect ratio (R varies from 1 to 4). SERS mapping revealed up to ~ 4 times signal increase at the hot-spots. Experimental observation is verified by numerical modeling and is qualitatively consistent with generic scaling arguments of interaction between plasmonic nanoparticles. The effect of randomization on the polarization selectivity for the transverse and longitudinal modes of nano-bricks is shown.

11.
Materials (Basel) ; 16(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903030

RESUMO

Ultra-short 230 fs laser pulses of 515 nm wavelength were tightly focused into 700 nm focal spots and utilised in opening ∼400 nm nano-holes in a Cr etch mask that was tens-of-nm thick. The ablation threshold was found to be 2.3 nJ/pulse, double that of plain silicon. Nano-holes irradiated with pulse energies below this threshold produced nano-disks, while higher energies produced nano-rings. Both these structures were not removed by either Cr or Si etch solutions. Subtle sub-1 nJ pulse energy control was harnessed to pattern large surface areas with controlled nano-alloying of Si and Cr. This work demonstrates vacuum-free large area patterning of nanolayers by alloying them at distinct locations with sub-diffraction resolution. Such metal masks with nano-hole opening can be used for formation of random patterns of nano-needles with sub-100 nm separation when applied to dry etching of Si.

12.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37421030

RESUMO

Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080TM photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF2 substrates allowed to achieve ∼50% transmittance in the chemical fingerprinting spectral region 2-5 µm wavelengths since MLAs were only ∼10 µm high corresponding to the numerical aperture of 0.3 (the lens height is comparable with the IR wavelength). To combine diffractive and refractive capabilities in miniaturised optical setup, a graphene oxide (GO) grating acting as a linear polariser was also fabricated by fs-DLW by ablation of a 1 µm-thick GO thin film. Such an ultra-thin GO polariser can be integrated with the fabricated MLA to add dispersion control at the focal plane. Pairs of MLAs and GO polarisers were characterised throughout the visible-IR spectral window and numerical modelling was used to simulate their performance. A good match between the experimental results of MLA focusing and simulations was achieved.

13.
Nanomaterials (Basel) ; 13(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37368324

RESUMO

Herein, we give an overview of several less explored structural and optical characterization techniques useful for biomaterials. New insights into the structure of natural fibers such as spider silk can be gained with minimal sample preparation. Electromagnetic radiation (EMR) over a broad range of wavelengths (from X-ray to THz) provides information of the structure of the material at correspondingly different length scales (nm-to-mm). When the sample features, such as the alignment of certain fibers, cannot be characterized optically, polarization analysis of the optical images can provide further information on feature alignment. The 3D complexity of biological samples necessitates that there be feature measurements and characterization over a large range of length scales. We discuss the issue of characterizing complex shapes by analysis of the link between the color and structure of spider scales and silk. For example, it is shown that the green-blue color of a spider scale is dominated by the chitin slab's Fabry-Pérot-type reflectivity rather than the surface nanostructure. The use of a chromaticity plot simplifies complex spectra and enables quantification of the apparent colors. All the experimental data presented herein are used to support the discussion on the structure-color link in the characterization of materials.

14.
Opt Express ; 20(10): 11466-77, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565766

RESUMO

We analyze the localized surface plasmon resonance spectra of periodic square lattice arrays of gold nano-disks, and we describe numerically and experimentally the effect of disorder on resonance width, spectrum, and EM field enhancement in increasingly randomized patterns. The periodic structure shows a narrower and stronger extinction peak, conversely we observe an increase of up to (1-2)×10(2) times enhancement as the disorder is gradually introduced. This allows for simpler, lower resolution fabrication, cost-effective in light harvesting for solar cell and sensing applications. We show that dipole-dipole interactions contribute to diffract light parallel to the surface as a mean of long-range coupling between the nano-disks.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais , Campos Eletromagnéticos , Desenho de Equipamento , Imageamento Tridimensional , Luz , Microscopia Eletrônica de Varredura/métodos , Modelos Teóricos , Nanopartículas/química , Distribuição Normal , Óptica e Fotônica , Energia Solar
15.
Micromachines (Basel) ; 13(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296122

RESUMO

Control of light absorption and transmission by metal-insulator-metal (MIM) metasurfaces are promising for applications in optical windows. This study shows the realization of photo-thermal energy conversion for radiative cooling by MIM metasurfaces with thin metal substrate and Indium-Tin-Oxide (ITO). High transparency of ITO at visible wavelengths and high absorption at mid-infrared wavelengths were realized for future applications of efficient cooling or heating applicable for living and working spaces. The MIM (ITO/CaF2/ITO) metasurface was patterned with low-resolution photo-lithography as a demonstration of further simplification and possible scalability of the patterning for practical window applications.

16.
Nanoscale Horiz ; 7(9): 1047-1053, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35796230

RESUMO

Polarisation analysis of light-matter interactions established for propagating optical far-fields is now extended into an evanescent field as demonstrated in this study using an attenuated total reflection (ATR) setup and a synchrotron source at THz frequencies. Scalar intensity E2, rather than a vector E-field, is used for absorbance analysis of the s- and p-components of the linearly polarised incident light. Absorption and phase changes induced by the sample and detected at the transmission port of the ATR accessory revealed previously non-accessible anisotropy in the absorption-dispersion properties of the sample probed by the evanescent optical near-field. Mapping of the sample's anisotropy perpendicular to its surface by the non-propagating light field is validated and the cos2 θ absorbance dependence was observed for the angle θ, where θ = 0° is aligned with the sample's surface. A four-polarisation method is presented for the absorbance mapping and a complimentary retardance spectrum is retrieved from the same measurement of the angular dependence of transmittance in structurally complex poly-hydroxybutyrate (PHB) and poly-L-lactic acid (PLLA) samples with amorphous and banded-spherulite (radially isotropic) crystalline regions. A possibility of all 3D mapping of anisotropy (polarisation tomography) is outlined.

17.
Opt Express ; 19(11): 10640-6, 2011 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-21643319

RESUMO

The instability of silver nanoblocks under atmospheric conditions is investigated. The localized surface plasmon resonance band of the silver nanoblocks shows a red shift, broadening, and damping with increasing storage time under atmospheric conditions. The change in spectral properties of silver nanoblocks is considered to be due to sulfidation of silver and structural breakage of silver nanoblock based on scanning electron microscope observation and numerical simulation. The effect of aspect ratio of silver nanoblocks on the change in spectral properties of the nanoengineered silver blocks is also discussed.

18.
Opt Express ; 19(18): 17683-90, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21935136

RESUMO

Microphotonic sensors have been actively studied with increasing demands for label-free biosensing in medical diagnoses and life sciences. For high-throughput and low-cost sensing, a high sensitivity is crucial for eliminating the pre-concentration process, while a simple setup of sensors is also desirable. This paper demonstrates a super-sensitivity for protein, which satisfies these requirements. The key device is a photonic crystal nanolaser, in particular with a nanoslot. Even using a simple setup, the nanolaser achieves an extraordinary-low detection limit for BSA protein, i.e. 255 fM on an average, which cannot be explained by its bulk index sensitivity. The specific adsorption of the protein is observed only around the nanoslot with strong laser intensity. This suggests that the super-sensitivity arises from the effective trapping of protein in the nanoslot.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteínas/análise , Adsorção , Animais , Técnicas Biossensoriais/estatística & dados numéricos , Bovinos , Desenho de Equipamento , Lasers de Estado Sólido , Fenômenos Ópticos , Sensibilidade e Especificidade , Soroalbumina Bovina/análise , Ressonância de Plasmônio de Superfície , Transdutores
19.
Nanotechnology ; 22(37): 375607, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21860081

RESUMO

A gold/silicon nanocomposite structure (NCS) was formed on a Si(100) surface by nanosecond pulsed laser irradiation. The Au/Si NCS contained both Au nanoparticles (NPs) and Au-Si alloy layers. We report that the use of laser irradiation to form Au NPs comprises two competing processes: a top-down effect involving decomposition into smaller NPs and a bottom-up effect involving self-assembly or self-organization into larger NPs. The formation of the periodic structure involved self-organization, i.e., the bottom-up effect, and was observed in situ using a pulsed-laser-equipped high-voltage electron microscope. The NCS formed by laser irradiation can be controlled by adjusting the laser energy density and the number of laser pulses.

20.
Appl Opt ; 50(28): 5600-5, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22016230

RESUMO

Ag/Au bimetallic nanoparticles possess the combinatory advantages of Au and Ag nanoparticles and can also be utilized to tune the properties of localized surface plasmon resonance. Ag/Au bilayer nanorods were prepared by electron beam lithography, and their spectral properties were investigated. Compared with Ag monolayer nanorods, Ag/Au bilayer nanorods show broader localized surface plasmon resonance bands, and the longitudinal mode and transverse mode localized surface plasmon bands show blueshift and redshift, respectively. The maximum near-field intensity of the longitudinal mode of the Ag/Au nanorod is less than half that of the Ag/Au nanorod without gold layer. Shape-induced modification of Ag/Au bilayer nanorods on their spectral properties was also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA