Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nucleic Acids Res ; 52(6): 2995-3010, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38224953

RESUMO

Meiosis is a key step during germ cell differentiation, accompanied by the activation of thousands of genes through germline-specific chromatin reorganization. The chromatin remodeling mechanisms underpinning early meiotic stages remain poorly understood. Here we focus on the function of one of the major autism genes, CHD8, in spermatogenesis, based on the epidemiological association between autism and low fertility rates. Specific ablation of Chd8 in germ cells results in gradual depletion of undifferentiated spermatogonia and the failure of meiotic double-strand break (DSB) formation, leading to meiotic prophase I arrest and cell death. Transcriptional analyses demonstrate that CHD8 is required for extensive activation of spermatogenic genes in spermatogonia, necessary for spermatogonial proliferation and meiosis. CHD8 directly binds and regulates genes crucial for meiosis, including H3K4me3 histone methyltransferase genes, meiotic cohesin genes, HORMA domain-containing genes, synaptonemal complex genes, and DNA damage response genes. We infer that CHD8 contributes to meiotic DSB formation and subsequent meiotic progression through combined regulation of these meiosis-related genes. Our study uncovers an essential role of CHD8 in the proliferation of undifferentiated spermatogonia and the successful progression of meiotic prophase I.


Assuntos
Meiose , Espermatogônias , Masculino , Proliferação de Células/genética , Cromatina/genética , Cromatina/metabolismo , Meiose/genética , Espermatogênese/genética , Animais , Camundongos
2.
Nat Methods ; 19(10): 1286-1294, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138174

RESUMO

Oxytocin (OT), a hypothalamic neuropeptide that acts as a neuromodulator in the brain, orchestrates a variety of animal behaviors. However, the relationship between brain OT dynamics and complex animal behaviors remains largely elusive, partly because of the lack of a suitable technique for its real-time recording in vivo. Here, we describe MTRIAOT, a G-protein-coupled receptor-based green fluorescent OT sensor that has a large dynamic range, suitable affinity, ligand specificity for OT orthologs, minimal effects on downstream signaling and long-term fluorescence stability. By combining viral gene delivery and fiber photometry-mediated fluorescence measurements, we demonstrate the utility of MTRIAOT for real-time detection of brain OT dynamics in living mice. MTRIAOT-mediated measurements indicate variability of OT dynamics depending on the behavioral context and physical condition of an animal. MTRIAOT will likely enable the analysis of OT dynamics in a variety of physiological and pathological processes.


Assuntos
Neuropeptídeos , Ocitocina , Animais , Comportamento Animal/fisiologia , Encéfalo , Ligantes , Camundongos , Ocitocina/fisiologia
3.
Mol Psychiatry ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438524

RESUMO

CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.

4.
Hum Mol Genet ; 29(8): 1274-1291, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32142125

RESUMO

Mutations in the gene encoding the chromatin remodeler CHD8 are strongly associated with autism spectrum disorder (ASD). CHD8 haploinsufficiency also results in autistic phenotypes in humans and mice. Although myelination defects have been observed in individuals with ASD, whether oligodendrocyte dysfunction is responsible for autistic phenotypes has remained unknown. Here we show that reduced expression of CHD8 in oligodendrocytes gives rise to abnormal behavioral phenotypes in mice. CHD8 was found to regulate the expression of many myelination-related genes and to be required for oligodendrocyte maturation and myelination. Ablation of Chd8 specifically in oligodendrocytes of mice impaired myelination, slowed action potential propagation and resulted in behavioral deficits including increased social interaction and anxiety-like behavior, with similar effects being apparent in Chd8 heterozygous mutant mice. Our results thus indicate that CHD8 is essential for myelination and that dysfunction of oligodendrocytes as a result of CHD8 haploinsufficiency gives rise to several neuropsychiatric phenotypes.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/genética , Neurogênese/genética , Fatores de Transcrição/genética , Animais , Transtorno do Espectro Autista/patologia , Montagem e Desmontagem da Cromatina/genética , Modelos Animais de Doenças , Haploinsuficiência/genética , Heterozigoto , Humanos , Camundongos , Mutação/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fenótipo
5.
Nature ; 537(7622): 675-679, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27602517

RESUMO

Autism spectrum disorder (ASD) comprises a range of neurodevelopmental disorders characterized by deficits in social interaction and communication as well as by restricted and repetitive behaviours. ASD has a strong genetic component with high heritability. Exome sequencing analysis has recently identified many de novo mutations in a variety of genes in individuals with ASD, with CHD8, a gene encoding a chromatin remodeller, being most frequently affected. Whether CHD8 mutations are causative for ASD and how they might establish ASD traits have remained unknown. Here we show that mice heterozygous for Chd8 mutations manifest ASD-like behavioural characteristics including increased anxiety, repetitive behaviour, and altered social behaviour. CHD8 haploinsufficiency did not result in prominent changes in the expression of a few specific genes but instead gave rise to small but global changes in gene expression in the mouse brain, reminiscent of those in the brains of patients with ASD. Gene set enrichment analysis revealed that neurodevelopment was delayed in the mutant mouse embryos. Furthermore, reduced expression of CHD8 was associated with abnormal activation of RE-1 silencing transcription factor (REST), which suppresses the transcription of many neuronal genes. REST activation was also observed in the brains of humans with ASD, and CHD8 was found to interact physically with REST in the mouse brain. Our results are thus consistent with the notion that CHD8 haploinsufficiency is a highly penetrant risk factor for ASD, with disease pathogenesis probably resulting from a delay in neurodevelopment.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Proteínas de Ligação a DNA/genética , Haploinsuficiência/genética , Animais , Ansiedade/complicações , Ansiedade/genética , Transtorno do Espectro Autista/complicações , Encéfalo/metabolismo , Proteínas de Ligação a DNA/deficiência , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Regulação para Baixo , Predisposição Genética para Doença , Heterozigoto , Masculino , Megalencefalia/complicações , Megalencefalia/genética , Camundongos , Camundongos Knockout , Mutação , Penetrância , Fenótipo , Proteínas Repressoras/metabolismo , Comportamento Social , Transcriptoma
6.
Genes Cells ; 25(6): 427-438, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32267063

RESUMO

All trophoblast subtypes of the placenta are derived from trophoblast stem cells (TSCs). TSCs have the capacity to self-renew, but how the proliferation of these cells is regulated in the undifferentiated state has been largely unclear. We now show that the F-box protein Skp2 regulates the proliferation of TSCs and thereby plays a pivotal role in placental development in mice on the C57BL/6 background. The placenta of Skp2-/- mouse embryos on the C57BL/6 background was smaller than that of their Skp2+/+ littermates, with the mutant embryos also manifesting intrauterine growth retardation. Although the Skp2-/- mice were born alive, most of them died before postnatal day 21, presumably as a result of placental defects. Depletion of Skp2 in TSCs cultured in the undifferentiated state resulted in a reduced rate of proliferation and arrest of the cell cycle in G1 phase, indicative of a defect in self-renewal capacity. The cell cycle arrest apparent in Skp2-deficient TSCs was reversed by additional ablation of the cyclin-dependent kinase inhibitor (CKI) p57 but not by that of the CKI p27. Our results thus suggest that Skp2-mediated degradation of p57 is an important determinant of the self-renewal capacity of TSCs during placental development, at least in mice of certain genetic backgrounds.


Assuntos
Ciclo Celular/genética , Embrião de Mamíferos/metabolismo , Placenta/metabolismo , Placentação/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Células-Tronco/metabolismo , Trofoblastos/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Embrião de Mamíferos/embriologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/embriologia , Gravidez , Ratos , Proteínas Quinases Associadas a Fase S/genética
7.
BMC Neurosci ; 22(1): 32, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933000

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is characterized by the core symptoms of impaired social interactions. Increasing evidence suggests that ASD has a strong genetic link with mutations in chromodomain helicase DNA binding protein 8 (CHD8), a gene encoding a chromatin remodeler. It has previously been shown that Chd8 haplodeficient male mice manifest ASD-like behavioral characteristics such as anxiety and altered social behavior. Along with that, oxytocin (OT) is one of the main neuropeptides involved in social behavior. Administration of OT has shown improvement of social behavior in genetic animal models of ASD. The present study was undertaken to further explore behavioral abnormalities of Chd8 haplodeficient mice of both sexes, their link with OT, and possible effects of OT administration. First, we performed a battery of behavioral tests on wild-type and Chd8+/∆SL female and male mice. Next, we measured plasma OT levels and finally studied the effects of intraperitoneal OT injection on observed behavioral deficits. RESULTS: We showed general anxiety phenotype in Chd8+/∆SL mice regardless of sex, the depressive phenotype in Chd8+/∆SL female mice only and bidirectional social deficit in female and male mice. We observed decreased level of OT in Chd+/∆SL mice, possibly driven by males. Mice injected by OT demonstrated recovery of social behavior, while reduced anxiety was observed only in male mice. CONCLUSIONS: Here, we demonstrated that abnormal social behaviors were observed in both male and female Chd8+/∆SL mice. The ability of peripheral OT administration to affect such behaviors along with altered plasma OT levels indicated a possible link between Chd8 + /∆SL and OT in the pathogenesis of ASD as well as the possible usefulness of OT as a therapeutic tool for ASD patients with CHD8 mutations.


Assuntos
Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Proteínas de Ligação a DNA/genética , Haploinsuficiência/efeitos dos fármacos , Ocitocina/uso terapêutico , Comportamento Social , Animais , Transtorno Autístico/metabolismo , Proteínas de Ligação a DNA/deficiência , Feminino , Haploinsuficiência/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Ocitocina/farmacologia
8.
Genes Cells ; 21(5): 517-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26999371

RESUMO

Aldehyde dehydrogenase (ALDH) activity is a hallmark of stem cells including embryonic, adult tissue and cancer stem cells. The SCF(FBXL) (12) complex is an authentic ubiquitin ligase that targets ALDH3 for degradation. FBXL12 is essential for the differentiation of trophoblast stem cells into specific cell types in the placenta during mouse embryogenesis, but its physiological functions in adult tissues have remained unknown. We have now investigated the role of the FBXL12-ALDH3 axis in the thymus, in which FBXL12 was most abundant among adult mouse tissues examined. During T-cell differentiation, FBXL12 is most abundant in CD4(+) CD8(+) (DP) cells, with its expression declining as these cells differentiate into CD4(+) CD8(-) or CD4(-) CD8(+) (SP) cells. T cells of FBXL12-null mice manifested a differentiation block at the DP-SP transition that was associated with ALDH3 accumulation in DP cells. This differentiation block was also apparent in wild-type mouse recipients of FBXL12-null bone marrow transplants as well as in FBXL12-null fetal thymic organ culture, suggesting that it is a cell-autonomous phenomenon in the thymus rather than an indirect effect of altered systemic conditions. Our results thus indicate that, in addition to its role in placental development, the FBXL12-ALDH3 axis is required for maturation of undifferentiated thymocytes.


Assuntos
Proteínas F-Box/metabolismo , Linfócitos T/citologia , Timo/citologia , Aldeído Desidrogenase/metabolismo , Animais , Diferenciação Celular , Camundongos , Linfócitos T/metabolismo , Timo/metabolismo
9.
Stem Cells ; 33(11): 3327-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26124079

RESUMO

How stem cells maintain their stemness or initiate exit from the stem cell state for differentiation remains largely unknown. Aldehyde dehydrogenase (ALDH) activity is a hallmark of stem cells-including embryonic, adult tissue, and cancer stem cells-and is essential for their maintenance. The mechanisms by which ALDH activity is regulated in stem cells have remained poorly understood, however. We now show that the ubiquitin-dependent degradation of ALDH3 mediated by FBXL12 (F box and leucine-rich repeat protein 12) is essential for execution of the differentiation program of trophoblast stem cells (TSCs). FBXL12 is present only in eutherian mammals, and its expression is largely restricted to the placenta during mouse embryogenesis. FBXL12 was found to interact specifically with members of the ALDH3 family and to mediate their polyubiquitylation. Most mice deficient in FBXL12 died during the embryonic or perinatal period probably as a result of abnormal development of the placenta, characterized by impaired formation of the junctional zone. ALDH3 accumulated in the FBXL12-deficient placenta, and forced expression of ALDH3 in wild-type TSCs phenocopied the differentiation defect of FBXL12-deficient TSCs. Conversely, inhibition of ALDH3 activity by gossypol rescued the phenotype of FBXL12 deficiency. Our results suggest that FBXL12 plays a key role in the downregulation of ALDH3 activity in TSCs and thereby initiates trophoblast differentiation during placental development.


Assuntos
Aldeído Desidrogenase/metabolismo , Diferenciação Celular/fisiologia , Proteínas F-Box/fisiologia , Placentação/fisiologia , Trofoblastos/fisiologia , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Proteômica/métodos
10.
J Biol Chem ; 289(23): 16430-41, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24778179

RESUMO

FBXL5 (F-box and leucine-rich repeat protein 5) is the F-box protein subunit of, and therefore responsible for substrate recognition by, the SCF(FBXL5) ubiquitin-ligase complex, which targets iron regulatory protein 2 (IRP2) for proteasomal degradation. IRP2 plays a central role in the maintenance of cellular iron homeostasis in mammals through posttranscriptional regulation of proteins that contribute to control of the intracellular iron concentration. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo, given that mice lacking FBXL5 die during early embryogenesis as a result of unrestrained IRP2 activity and oxidative stress attributable to excessive iron accumulation. Despite its pivotal role in the control of iron homeostasis, however, little is known of the upstream regulation of FBXL5 activity. We now show that FBXL5 undergoes constitutive ubiquitin-dependent degradation at the steady state. With the use of a proteomics approach to the discovery of proteins that regulate the stability of FBXL5, we identified the large HECT-type ubiquitin ligase HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) as an FBXL5-associated protein. Inhibition of the HERC2-FBXL5 interaction or depletion of endogenous HERC2 by RNA interference resulted in the stabilization of FBXL5 and a consequent increase in its abundance. Such accumulation of FBXL5 in turn led to a decrease in the intracellular content of ferrous iron. Our results thus suggest that HERC2 regulates the basal turnover of FBXL5, and that this ubiquitin-dependent degradation pathway contributes to the control of mammalian iron metabolism.


Assuntos
Proteínas F-Box/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ferro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Bases , Primers do DNA , Células HEK293 , Células HeLa , Humanos , Hidrólise , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase
11.
Genes Cells ; 17(7): 536-47, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22646239

RESUMO

CHD7 is one of the nine members of the chromodomain helicase DNA-binding family of ATP-dependent chromatin remodeling enzymes. Mutations in CHD7 give rise to CHARGE syndrome, a human condition characterized by malformation of various organs. We have now identified a novel transcript of CHD7 that is generated by alternative splicing of exon 6. The protein encoded by this variant transcript (termed CHD7S) lacks one of the two chromodomains as well as the helicase/ATPase domain, DNA-binding domain and BRK domains of the full-length protein (CHD7L). CHD7S was found to localize specifically to the nucleolus in a manner dependent on a nucleolar localization signal. Over-expression of CHD7S, as well as that of CHD7L, resulted in an increase in 45S precursor rRNA production. Conversely, depletion of both CHD7S and CHD7L by RNA interference inhibited both 45S precursor rRNA production and cell proliferation to a greater extent than did depletion of CHD7L alone. Furthermore, we found that, like CHD7L, CHD7S binds to Sox2 in the nucleoplasm. Unexpectedly, however, whereas over-expression of CHD7L promoted Sox2-mediated transcriptional regulation, over-expression of CHD7S suppressed it. These results indicate that CHD7S functions cooperatively or antagonistically with CHD7L in the nucleolus and nucleoplasm, respectively.


Assuntos
Processamento Alternativo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sequência de Bases , Linhagem Celular , Nucléolo Celular/metabolismo , DNA Helicases/química , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica , Ordem dos Genes , Humanos , Dados de Sequência Molecular , Sinais de Localização Nuclear/metabolismo , Especificidade de Órgãos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Ribossômico/genética , Fatores de Transcrição SOXB1/metabolismo , Ativação Transcricional
12.
Commun Biol ; 6(1): 593, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268684

RESUMO

CHD8 encodes chromodomain helicase DNA-binding protein 8 and its mutation is a highly penetrant risk factor for autism spectrum disorder (ASD). CHD8 serves as a key transcriptional regulator on the basis of its chromatin-remodeling activity and thereby controls the proliferation and differentiation of neural progenitor cells. However, the function of CHD8 in postmitotic neurons and the adult brain has remained unclear. Here we show that Chd8 homozygous deletion in mouse postmitotic neurons results in downregulation of the expression of neuronal genes as well as alters the expression of activity-dependent genes induced by KCl-mediated neuronal depolarization. Furthermore, homozygous ablation of CHD8 in adult mice was associated with attenuation of activity-dependent transcriptional responses in the hippocampus to kainic acid-induced seizures. Our findings implicate CHD8 in transcriptional regulation in postmitotic neurons and the adult brain, and they suggest that disruption of this function might contribute to ASD pathogenesis associated with CHD8 haploinsufficiency.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Homozigoto , Deleção de Sequência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo
13.
PLoS One ; 18(7): e0288930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471381

RESUMO

Facial expressions are widely recognized as universal indicators of underlying internal states in most species of animals, thereby presenting as a non-invasive measure for assessing physical and mental conditions. Despite the advancement of artificial intelligence-assisted tools for automated analysis of voluminous facial expression data in human subjects, the corresponding tools for mice still remain limited so far. Considering that mice are the most prevalent model animals for studying human health and diseases, a comprehensive characterization of emotion-dependent patterns of facial expressions in mice could extend our knowledge on the basis of emotions and the related disorders. Here, we present a framework for the development of a deep learning-powered tool for classifying facial expressions in head-fixed mouse. We demonstrate that our machine vision was capable of accurately classifying three different emotional states from lateral facial images in head-fixed mouse. Moreover, we objectively determined how our classifier characterized the differences among the facial images through the use of an interpretation technique called Gradient-weighted Class Activation Mapping. Importantly, our machine vision presumably discerned the data by leveraging multiple facial features. Our approach is likely to facilitate the non-invasive decoding of a variety of emotions from facial images in head-fixed mice.


Assuntos
Aprendizado Profundo , Expressão Facial , Humanos , Animais , Camundongos , Inteligência Artificial , Emoções/fisiologia , Exame Físico
14.
Cell Rep ; 34(5): 108688, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33535054

RESUMO

Chromodomain helicase DNA-binding protein 8 (CHD8) is an ATP-dependent chromatin-remodeling factor that is encoded by the most frequently mutated gene in individuals with autism spectrum disorder. CHD8 is expressed not only in neural tissues but also in many other organs; however, its functions are largely unknown. Here, we show that CHD8 is highly expressed in and maintains the stemness of hematopoietic stem cells (HSCs). Conditional deletion of Chd8 specifically in mouse bone marrow induces cell cycle arrest, apoptosis, and a differentiation block in HSCs in association with upregulation of the expression of p53 target genes. A colony formation assay and bone marrow transplantation reveal that CHD8 deficiency also compromises the stemness of HSCs. Furthermore, additional ablation of p53 rescues the impaired stem cell function and differentiation block of CHD8-deficient HSCs. Our results thus suggest that the CHD8-p53 axis plays a key role in regulation of the stemness and differentiation of HSCs.


Assuntos
Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Caderinas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Animais , Transtorno do Espectro Autista/genética , Caderinas/genética , Diferenciação Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Supressora de Tumor p53/genética
15.
Cell Rep ; 35(1): 108932, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826902

RESUMO

Mutations in the gene encoding the chromatin remodeler chromodomain helicase DNA-binding protein 8 (CHD8) are a highly penetrant risk factor for autism spectrum disorder (ASD). Although cerebellar abnormalities have long been thought to be related to ASD pathogenesis, it has remained largely unknown whether dysfunction of CHD8 in the cerebellum contributes to ASD phenotypes. We here show that cerebellar granule neuron progenitor (GNP)-specific deletion of Chd8 in mice impairs the proliferation and differentiation of these cells as well as gives rise to cerebellar hypoplasia and a motor coordination defect, but not to ASD-like behavioral abnormalities. CHD8 is found to regulate the expression of neuronal genes in GNPs. It also binds preferentially to promoter regions and modulates local chromatin accessibility of transcriptionally active genes in these cells. Our results have thus uncovered a key role for CHD8 in cerebellar development, with important implications for understanding the contribution of this brain region to ASD pathogenesis.


Assuntos
Transtorno Autístico/patologia , Cerebelo/embriologia , Cerebelo/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Atividade Motora , Animais , Comportamento Animal , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Cerebelo/anormalidades , Cromatina/metabolismo , Proteínas de Ligação a DNA/deficiência , Deficiências do Desenvolvimento , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Malformações do Sistema Nervoso , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo
16.
J Chem Educ ; 87(2): 202-204, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20084177

RESUMO

An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily available components and is suitable for small-group experiments. The PA signal from a greenhouse gas (GHG), such as CO(2), H(2)O, and CH(4), can be detected down to a concentration of 0.1%. Since the basic theory of the PA effect in gases due to IR absorption is straightforward, the experiments with this PA system are accessible to students. It can be shown that there is a significant difference in IR absorption between GHGs and the major components of the atmosphere, N(2), O(2), and Ar, which helps students understand that the minor components, that is, the GHGs, determine the IR absorptivity of the atmosphere.

17.
Mol Brain ; 13(1): 160, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228730

RESUMO

CHD8 encodes a chromatin-remodeling factor and is one of the most recurrently mutated genes in individuals with autism spectrum disorder (ASD). Although we have recently shown that mice heterozygous for Chd8 mutation manifest myelination defects and ASD-like behaviors, the detailed mechanisms underlying ASD pathogenesis have remained unclear. Here we performed diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rsfMRI) in oligodendrocyte lineage-specific Chd8 heterozygous mutant mice. DTI revealed that ablation of Chd8 specifically in oligodendrocytes of mice was associated with microstructural changes of specific brain regions including the cortex and striatum. The extent of these changes in white matter including the corpus callosum and fornix was correlated with total contact time in the reciprocal social interaction test. Analysis with rsfMRI revealed changes in functional brain connectivity in the mutant mice, and the extent of such changes in the cortex, hippocampus, and amygdala was also correlated with the change in social interaction. Our results thus suggest that changes in brain microstructure and functional connectivity induced by oligodendrocyte dysfunction might underlie altered social interaction in mice with oligodendrocyte-specific CHD8 haploinsufficiency.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Proteínas de Ligação a DNA/genética , Mutação/genética , Rede Nervosa/fisiopatologia , Oligodendroglia/metabolismo , Animais , Comportamento Animal , Encéfalo/diagnóstico por imagem , Linhagem da Célula , Imagem de Tensor de Difusão , Heterozigoto , Camundongos , Camundongos Mutantes , Comportamento Social
18.
Mol Cell Biol ; 26(16): 6157-69, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880526

RESUMO

Cullin-based ubiquitin ligases (E3s) constitute one of the largest E3 families. Fbxw8 (also known as Fbw6 or Fbx29) is an F-box protein that is assembled with Cul7 in an SCF-like E3 complex. Here we show that Cul7 forms a heterodimeric complex with Cul1 in a manner dependent on Fbxw8. We generated mice deficient in Fbxw8 and found that Cul7 did not associate with Cul1 in cells of these mice. Two-thirds of Fbxw8-/- embryos die in utero, whereas the remaining one-third are born alive and grow to adulthood. Fbxw8-/- embryos show intrauterine growth retardation and abnormal development of the placenta, characterized by both a reduced thickness of the spongiotrophoblast layer and abnormal vessel structure in the labyrinth layer. Although the placental phenotype of Fbxw8-/- mice resembles that of Cul7-/- mice, other abnormalities of Cul7-/- mice are not apparent in Fbxw8-/- mice. These results suggest that the Cul7-based SCF-like E3 complex has both Fbxw8-dependent and Fbxw8-independent functions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Proteínas F-Box/metabolismo , Placenta/embriologia , Animais , Cruzamentos Genéticos , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/patologia , Éxons/genética , Feminino , Retardo do Crescimento Fetal , Marcação de Genes , Genótipo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Genéticos , Fenótipo , Placenta/anormalidades , Placenta/citologia , Placenta/patologia , Gravidez , Ligação Proteica
19.
J Exp Med ; 216(4): 950-965, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877170

RESUMO

Hepatic iron overload is a risk factor for progression of hepatocellular carcinoma (HCC), although the molecular mechanisms underlying this association have remained unclear. We now show that the iron-sensing ubiquitin ligase FBXL5 is a previously unrecognized oncosuppressor in liver carcinogenesis in mice. Hepatocellular iron overload elicited by FBXL5 ablation gave rise to oxidative stress, tissue damage, inflammation, and compensatory proliferation of hepatocytes and to consequent promotion of liver carcinogenesis induced by exposure to a chemical carcinogen. The tumor-promoting outcome of FBXL5 deficiency in the liver was also found to be effective in a model of virus-induced HCC. FBXL5-deficient mice thus constitute the first genetically engineered mouse model of liver carcinogenesis promoted by iron overload. In addition, dysregulation of FBXL5-mediated cellular iron homeostasis was found to be associated with poor prognosis in human HCC, suggesting that FBXL5 plays a key role in defense against hepatocarcinogenesis.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas F-Box/metabolismo , Homeostase , Ferro/metabolismo , Neoplasias Hepáticas/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Estudos de Coortes , Modelos Animais de Doenças , Proteínas F-Box/genética , Hepatócitos/metabolismo , Humanos , Inflamação/genética , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo/genética , Prognóstico
20.
Cell Rep ; 23(7): 1988-2000, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768199

RESUMO

The gene encoding the chromatin remodeler CHD8 is the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Heterozygous mutations in CHD8 give rise to ASD that is often accompanied by macrocephaly, gastrointestinal complaints, and slender habitus. Whereas most phenotypes of CHD8 haploinsufficiency likely result from delayed neurodevelopment, the mechanism underlying slender habitus has remained unknown. Here, we show that CHD8 interacts with CCAAT/enhancer-binding protein ß (C/EBPß) and promotes its transactivation activity during adipocyte differentiation. Adipogenesis was impaired in Chd8-deleted preadipocytes, with the upregulation of C/EBPα and peroxisome-proliferator-activated receptor γ (PPARγ), two master regulators of this process, being attenuated in mutant cells. Furthermore, mice with CHD8 ablation in white preadipocytes had a markedly reduced white adipose tissue mass. Our findings reveal a mode of C/EBPß regulation by CHD8 during adipogenesis, with CHD8 deficiency resulting in a defect in the development of white adipose tissue.


Assuntos
Adipogenia , Transtorno Autístico/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/genética , Tecido Adiposo Branco/patologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica , Genoma , Células HEK293 , Humanos , Hipertrofia , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA