Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142243

RESUMO

The present work aims to show how the main properties of poly(methacrylic acid) (PMAA) hydrogels can be engineered by means of several silicon-based fillers (Laponite XLS/XLG, montmorillonite (Mt), pyrogenic silica (PS)) employed at 10 wt% concentration based on MAA. Various techniques (FT-IR, XRD, TGA, SEM, TEM, DLS, rheological measurements, UV-VIS) were used to comparatively study the effect of these fillers, in correlation with their characteristics, upon the structure and swelling, viscoelastic, and water decontamination properties of (nano)composite hydrogels. The experiments demonstrated that the nanocomposite hydrogel morphology was dictated by the way the filler particles dispersed in water. The equilibrium swelling degree (SDe) depended on both the pH of the environment and the filler nature. At pH 1.2, a slight crosslinking effect of the fillers was evidenced, increasing in the order Mt < Laponite < PS. At pH > pKaMAA (pH 5.4; 7.4; 9.5), the Laponite/Mt-containing hydrogels displayed a higher SDe as compared to the neat one, while at pH 7.4/9.5 the PS-filled hydrogels surprisingly displayed the highest SDe. Rheological measurements on as-prepared hydrogels showed that the filler addition improved the mechanical properties. After equilibrium swelling at pH 5.4, G' and G" depended on the filler, the Laponite-reinforced hydrogels proving to be the strongest. The (nano)composite hydrogels synthesized displayed filler-dependent absorption properties of two cationic dyes used as model water pollutants, Laponite XLS-reinforced hydrogel demonstrating both the highest absorption rate and absorption capacity. Besides wastewater purification, the (nano)composite hydrogels described here may also find applications in the pharmaceutical field as devices for the controlled release of drugs.


Assuntos
Nanocompostos , Poluentes da Água , Bentonita , Corantes , Preparações de Ação Retardada , Hidrogéis/química , Metacrilatos , Nanocompostos/química , Nanogéis , Silicatos , Silício , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Água
2.
Molecules ; 26(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916520

RESUMO

In the present work, the properties of ZnO nanoparticles obtained using an eco-friendly synthesis (biomediated methods in microwave irradiation) were studied. Saponaria officinalis extracts were used as both reducing and capping agents in the green nanochemistry synthesis of ZnO. Inorganic zinc oxide nanopowders were successfully prepared by a modified hydrothermal method and plant extract-mediated method. The influence of microwave irradiation was studied in both cases. The size, composition, crystallinity and morphology of inorganic nanoparticles (NPs) were investigated using dynamic light scattering (DLS), powder X-ray diffraction (XRD), SEM-EDX microscopy. Tunings of the nanochemistry reaction conditions (Zn precursor, structuring agent), ZnO NPs with various shapes were obtained, from quasi-spherical to flower-like. The optical properties and photocatalytic activity (degradation of methylene blue as model compound) were also investigated. ZnO nanopowders' antibacterial activity was tested against Gram-positive and Gram-negative bacterial strains to evidence the influence of the vegetal extract-mediated synthesis on the biological activity.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Saponaria/química , Óxido de Zinco/farmacologia , Antibacterianos/síntese química , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Catálise , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Química Verde , Humanos , Luz , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Micro-Ondas , Processos Fotoquímicos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Óxido de Zinco/química
3.
J Microencapsul ; 33(4): 331-43, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27283106

RESUMO

The aim of this work is to encapsulate a self-healing photo-polymerisable material for aerospace applications. To meet the technical requirements of space applications - low and high temperatures: -120 °C (dark side) to +250 °C (solar side); UV radiations: 200-400 nm; low pressure: 10(-4 )Pa - we chose trimethylolpropane triacrylate as healing agent. This monomer polymerises at 190 °C. To avoid its earlier thermal polymerisation, an inhibitor was added to the monomer/photo-initiator formulation. Moreover, among several microencapsulation techniques tested, we chose the sol-gel process to form silica microcapsules containing the self-healing formulation. These microcapsules were characterised by different analysis (scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), Fourier transform infra-red spectroscopy (FTIR), etc.) and satisfied our requirements (size 1-30 µm, thermal stability >250 °C). After the microcapsules breakage, the generation of poly(TMPTA) film by radical photopolymerisation of the released TMPTA monomer was proved by disappearance of the IR peak at 1635 cm(-1) (assigned to TMPTA). The obtained film has a thermal stability above 300 °C.


Assuntos
Acrilatos/química , Processos Fotoquímicos , Raios Ultravioleta , Cápsulas/química
4.
Int J Mol Sci ; 17(11)2016 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-27869768

RESUMO

The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na⁺ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol-gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids' final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules.


Assuntos
Materiais Biocompatíveis/síntese química , Preparações de Ação Retardada/síntese química , Ácido Oleico/química , Silicatos/química , Dióxido de Silício/química , Álcalis/química , Cátions Monovalentes , Interações Hidrofóbicas e Hidrofílicas , Transição de Fase , Silanos/química , Sódio/química , Termodinâmica
5.
Gels ; 9(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37367142

RESUMO

Synthetic organic pigments from the direct discharge of textile effluents are considered as colossal global concern and attract the attention of scholars. The efficient construction of heterojunction systems involving precious metal co-catalysis is an effective strategy for obtaining highly efficient photocatalytic materials. Herein, we report the construction of a Pt-doped BiFeO3/O-g-C3N4 (Pt@BFO/O-CN) S-scheme heterojunction system for photocatalytic degradation of aqueous rhodamine B (RhB) under visible-light irradiation. The photocatalytic performances of Pt@BFO/O-CN and BFO/O-CN composites and pristine BiFeO3 and O-g-C3N4 were compared, and the photocatalytic process of the Pt@BFO/O-CN system was optimized. The results exhibit that the S-scheme Pt@BFO/O-CN heterojunction has superior photocatalytic performance compared to its fellow catalysts, which is due to the asymmetric nature of the as-constructed heterojunction. The as-constructed Pt@BFO/O-CN heterojunction reveals high performance in photocatalytic degradation of RhB with a degradation efficiency of 100% achieved after 50 min of visible-light irradiation. The photodegradation fitted well with pseudo-first-order kinetics proceeding with a rate constant of 4.63 × 10-2 min-1. The radical trapping test reveals that h+ and •O2- take the leading role in the reaction, while the stability test reveals a 98% efficiency after the fourth cycle. As established from various interpretations, the considerably enhanced photocatalytic performance of the heterojunction system can be attributed to the promoted charge carrier separation and transfer of photoexcited carriers, as well as the strong photo-redox ability established. Hence, the S-scheme Pt@BFO/O-CN heterojunction is a good candidate in the treatment of industrial wastewater for the mineralization of organic micropollutants, which pose a grievous threat to the environment.

6.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904451

RESUMO

Synthetic organic pigments like xanthene and azo dyes from the direct discharge of textile effluents are considered colossal global issues and attract the concern of scholars. Photocatalysis continues to be a very valuable pollution control method for industrial wastewater. Incorporations of metal oxide catalysts such as zinc oxide (ZnO) on mesoporous Santa Barbara Armophous-15 (SBA-15) support to improve catalyst thermo-mechanical stability have been comprehensively reported. However, charge separation efficiency and light absorption of ZnO/SBA-15 continue to be limiting its photocatalytic activity. Herein, we report a successful preparation of Ruthenium-induced ZnO/SBA-15 composite via conventional incipient wetness impregnation technique with the aim of boosting the photocatalytic activity of the incorporated ZnO. Physicochemical properties of the SBA-15 support, ZnO/SBA-15, and Ru-ZnO/SBA-15 composites were characterized by X-ray diffraction (XRD), N2 physisorption isotherms at 77 K, Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDS), and transmission electron microscopy (TEM). The characterization outcomes exhibited that ZnO and ruthenium species have been successfully embedded into SBA-15 support, andtheSBA-15 support maintains its structured hexagonal mesoscopic ordering in both ZnO/SBA-15 and Ru-ZnO/SBA-15 composites. The photocatalytic activity of the composite was assessed through photo-assisted mineralization of aqueous MB solution, and the process was optimized for initial dye concentration and catalyst dosage. 50 mg catalyst exhibited significant degradation efficiency of 97.96% after 120 min, surpassing the efficiencies of 77% and 81% displayed by 10 and 30 mg of the as-synthesized catalyst. The photodegradation rate was found to decrease with an increase in the initial dye concentration. The superior photocatalytic activity of Ru-ZnO/SBA-15 over the binary ZnO/SBA-15 may be attributed to the slower recombination rate of photogenerated charges on the ZnO surface with the addition of ruthenium.

7.
Materials (Basel) ; 16(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049167

RESUMO

The continuous degradation of cultural heritage artifacts (due to different factors, including the rising air pollution, climate change or excessive biological activity, among others) requires the continuous development of protection strategies, technologies and materials. In this regard, polyelectrolytes have offered effective ways to fight against degradation but also to conserve the cultural heritage objects. In this review, we highlight the key developments in the creation and use of polyelectrolytes for the preservation, consolidation and cleaning of the cultural heritage artifacts (with particular focus on stone, metal and artifacts of organic nature, such as paper, leather, wood or textile). The state of the art in this area is presented, as well as future development perspectives.

8.
Pharmaceutics ; 15(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36839693

RESUMO

Salecan, a kind of polysaccharide, is produced by the Agrobacterium ZX09 salt tolerant strain. In this study, green crosslinked citric acid-salecan hydrogels are explored as novel materials with a high potential for use in regenerative medicine. The impact of salecan and citric acid on the final crosslinked hydrogels was intensively studied and estimated in terms of the whole physicochemical properties and antimicrobial activity. FTIR spectra demonstrated the successful green crosslinking of salecan through its esterification with citric acid where the formation of strong covalent bonds collaboratively helped to stabilize the entire hydrogel systems in a wet state. Hydrogels presented a microporous morphology, good swelling capacity, pH responsiveness, great mechanical stability under stress conditions and good antibacterial activity, all related to the concentration of the biopolymers used in the synthesis step. Additionally, salecan hydrogels were preliminary investigated as printing inks. Thanks to their excellent rheological behavior, we optimized the citrate-salecan hydrogel inks and printing parameters to render 3D constructs with great printing fidelity and integrity. The novel synthesized salecan green crosslinked hydrogels enriches the family of salecan-derived hydrogels. Moreover, this work not only expands the application of salecan hydrogels in various fields, but also provides a new potential option of designing salecan-based 3D printed scaffolds for customized regenerative medicine.

9.
Polymers (Basel) ; 15(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514413

RESUMO

This paper describes the preparation of new PEG6000-silica-MWCNTs composites as shape-stabilized phase change materials (ssPCMs) for application in latent heat storage. An innovative method was employed to obtain the new organic-inorganic hybrid materials, in which both a part of the PEG chains, used as the phase change material, and a part of the hydroxyl functionalized multiwall carbon nanotubes (MWCNTs-OH), used as thermo-conductive fillers, were covalently connected by newly formed urethane bonds to the in-situ-generated silica matrix. The study's main aim was to investigate the optimal amount of PEG6000 that can be added to the fixed sol-gel reaction mixture so that no leakage of PEG occurs after repeated heating-cooling cycles. The findings show that the optimum PEG6000/NCOTEOS molar ratio was 2/1 (~91.5% PEG6000), because both the connected and free PEG chains interacted strongly with the in-situ-generated silica matrix to form a shape-stabilized material while preserving high phase-transition enthalpies (~153 J/G). Morphological and structural findings obtained by SEM, X-ray and Raman techniques indicated a distribution of the silica component in the amorphous phase (~27% for the optimum composition) located among the crystalline lamellae built by the folded chains of the PEG component. This composite maintained good chemical stability after a 450-cycle thermal test and had a good storage efficiency (~84%).

10.
Pharmaceutics ; 15(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37242662

RESUMO

The skin is a complex and selective system from the perspective of permeability to substances from the external environment. Microemulsion systems have demonstrated a high performance in encapsulating, protecting and transporting active substances through the skin. Due to the low viscosity of microemulsion systems and the importance of a texture that is easy to apply in the cosmetic and pharmaceutical fields, gel microemulsions are increasingly gaining more interest. The aim of this study was to develop new microemulsion systems for topical use; to identify a suitable water-soluble polymer in order to obtain gel microemulsions; and to study the efficacy of the developed microemulsion and gel microemulsion systems in the delivery of a model active ingredient, namely curcumin, into the skin. A pseudo-ternary phase diagram was developed using AKYPO® SOFT 100 BVC, PLANTACARE® 2000 UP Solution and ethanol as a surfactant mix; caprylic/capric triglycerides, obtained from coconut oil, as the oily phase; and distilled water. To obtain gel microemulsions, sodium hyaluronate salt was used. All these ingredients are safe for the skin and are biodegradable. The selected microemulsions and gel microemulsions were physicochemically characterized by means of dynamic light scattering, electrical conductivity, polarized microscopy and rheometric measurements. To evaluate the efficiency of the selected microemulsion and gel microemulsion to deliver the encapsulated curcumin, an in vitro permeation study was performed.

11.
Materials (Basel) ; 16(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769988

RESUMO

A multitude of dressings have been developed to promote wound repair, such as membranes, foams, hydrocolloids and hydrogels. In this study, a crosslinked polysaccharide hydrogel was mixed with a bioactive ingredient to synthesize a novel nanocomposite material to be used in wound healing. Variation of the ratio between hydrogel components was followed and its effect was analyzed in regard to swelling, degradation rate and thermo-mechanical behavior. The resulting crosslinked structures were characterized by FTIR and microscopy analyses. The antimicrobial activity of the crosslinked hydrogels loaded with bioactive agent was evaluated using two bacterial strains (Gram-positive Staphylococcus aureus and Gram-negative bacteria Escherichia Coli). All the results showed that the new synthesized biopolymer nanocomposites have adequate properties to be used as antibacterial wound dressings.

12.
Gels ; 9(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37233016

RESUMO

Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide's polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.

13.
Pharmaceutics ; 14(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36297572

RESUMO

Apart from its well-known activity as an antimicrobial agent, Curcumin (CURC) has recently started to arouse interest as a photosensitizer in the photodynamic therapy of bacterial infections. The aim of the present study was to evidence the influence of the encapsulation of Curcumin into polymeric micelles on the efficiency of photoinduced microbial inhibition. The influence of the hydrophobicity of the selected Pluronics (P84, P123, and F127) on the encapsulation, stability, and antimicrobial efficiency of CURC-loaded micelles was investigated. In addition, the size, morphology, and drug-loading capacity of the micellar drug delivery systems have been characterized. The influence of the presence of micellar aggregates and unassociated molecules of various Pluronics on the membrane permeability was investigated on both normal and resistant microbial strains of E. coli, S. aureus, and C. albicans. The antimicrobial efficiency on the common pathogens was assessed for CURC-loaded polymeric micelles in dark conditions and activated by blue laser light (470 nm). Significant results in the reduction of the microorganism's growth were found in cultures of C. albicans, even at very low concentrations of surfactants and Curcumin. Unlike the membrane permeabilization effect of the monomeric solution of Pluronics, reported in the case of tumoral cells, a limited permeabilization effect was found on the studied microorganisms. Encapsulation of the Curcumin in Pluronic P84 and P123 at very low, nontoxic concentrations for photosensitizer and drug-carrier, produced CURC-loaded micelles that prove to be effective in the light-activated inhibition of resistant species of Gram-positive bacteria and fungi.

14.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363186

RESUMO

The structure-property relationship of dielectric elastomers, as well as the methods of improving the control of this relationship, has been widely studied over the last few years, including in some of our previous works. In this paper, we study the control, improvement, and correlation, for a significant range of temperatures, of the mechanical and dielectric properties of polystyrene-b-(ethylene-co-butylene)-b-styrene (SEBS) and maleic-anhydride-grafted SEBS (SEBS-MA) by using graphite (G) as filler in various concentrations. The aim is to analyze the suitability of these composites for converting electrical energy into mechanical energy or vice versa. The dielectric spectroscopy analysis performed in the frequency range of 10 to 1 MHz and at temperatures between 27 and 77 °C emphasized an exponential increase in real permittivity with G concentration, a low level of dielectric losses (≈10-3), as well as the stability of dielectric losses with temperature for high G content. These results correlate well with the increase in mechanical stiffness with an increase in G content for both SEBS/G and SEBS-MA/G composites. The activation energies for the dielectric relaxation processes detected in SEBS/G and SEBS-MA/G composites were also determined and discussed in connection with the mechanical, thermal, and structural properties resulting from thermogravimetric analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses.

15.
Materials (Basel) ; 14(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946776

RESUMO

The present work aims at comparatively studying the effects of the concentrations of a monomer (10-30 wt% based on the whole hydrogel composition), crosslinking agent (1-3 mol% based on the monomer), and reinforcing agent (montmorillonite-MMT, 1-3 wt.% based on the whole hydrogel composition) on the swelling and viscoelastic properties of the crosslinked hydrogels prepared from methacrylic acid (MAA) and N,N'-methylenebisacrylamide (BIS) in the presence of K2S2O8 in aqueous solution. The viscoelastic measurements, carried out on the as-prepared hydrogels, showed that the monomer concentration had the largest impact, its three-time enhancement causing a 30-fold increase in the storage modulus, as compared with only a fivefold increase in the case of the crosslinking agent and 1.5-fold increase for MMT in response to a similar threefold concentration increase. Swelling studies, performed at three pH values, revealed that the water absorption of the hydrogels decreased with increasing concentration of both the monomer and crosslinking agent, with the amplitude of the effect of concentration modification being similar at pH 5.4 and 7.4 in both cases, but very different at pH 1.2. Further, it was shown that the increased pH differently influenced the swelling degree in the case of the hydrogel series in which the concentrations of the monomer and crosslinking agent were varied. In contrast to the effect of the monomer and crosslinking agent concentrations, the increase in the MMT amount in the hydrogel resulted in an increased swelling degree at pH 5.4 and 7.4, while at pH 1.2, a slight decrease in the water absorption was noticed. The hydrogel crosslinking density determinations revealed that this parameter was most affected by the increase in the monomer concentration.

16.
Pharmaceutics ; 13(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804932

RESUMO

In this work, novel polymeric mixed micelles from Pluronic F127 and Cremophor EL were investigated as drug delivery systems for Norfloxacin as model antibiotic drug. The optimal molar ratio of surfactants was determined, in order to decrease critical micellar concentration (CMC) and prepare carriers with minimal surfactant concentrations. The particle size, zeta potential, and encapsulation efficiency were determined for both pure and mixed micelles with selected composition. In vitro release kinetics of Norfloxacin from micelles show that the composition of surfactant mixture generates tunable extended release. The mixed micelles exhibit good biocompatibility against normal fibroblasts MRC-5 cells, while some cytotoxicity was found in all micellar systems at high concentrations. The influence of the surfactant components in the carrier on the antibacterial properties of Norfloxacin was investigated. The drug loaded mixed micellar formulation exhibit good activity against clinical isolated strains, compared with the CLSI recommended standard strains (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29213, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922). P. aeruginosa 5399 clinical strain shows low sensitivity to Norfloxacin in all tested micelle systems. The results suggest that Cremophor EL-Pluronic F127 mixed micelles can be considered as novel controlled release delivery systems for hydrophobic antimicrobial drugs.

17.
Pharmaceutics ; 13(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916981

RESUMO

Gel microemulsion combines the advantages of the microemulsion, which can encapsulate, protect and deliver large quantities of active ingredients, and the gel, which is so appreciated in the cosmetic industry. This study aimed to develop and characterize new gel microemulsions suitable for topical cosmetic applications, using grape seed oil as the oily phase, which is often employed in pharmaceuticals, especially in cosmetics. The optimized microemulsion was formulated using Tween 80 and Plurol® Diisostearique CG as a surfactant mix and ethanol as a co-solvent. Three different water-soluble polymers were selected in order to increase the viscosity of the microemulsion: Carbopol® 980 NF, chitosan, and sodium hyaluronate salt. All used ingredients are safe, biocompatible and biodegradable. Curcumin was chosen as a model drug. The obtained systems were physico-chemically characterized by means of electrical conductivity, dynamic light scattering, polarized microscopy and rheometric measurements. Evaluation of the cytotoxicity was accomplished by MTT assay. In the final phase of the study, the release behavior of Curcumin from the optimized microemulsion and two gel microemulsions was evaluated. Additionally, mathematical models were applied to establish the kinetic release mechanism. The obtained gel microemulsions could be effective systems for incorporation and controlled release of the hydrophobic active ingredients.

18.
Curr Med Chem ; 27(6): 919-954, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30182847

RESUMO

The present review aims to summarize the research efforts undertaken in the last few years in the development and testing of hydrogel-clay nanocomposites proposed as carriers for controlled release of diverse drugs. Their advantages, disadvantages and different compositions of polymers/biopolymers with diverse types of clays, as well as their interactions are discussed. Illustrative examples of studies regarding hydrogel-clay nanocomposites are detailed in order to underline the progressive researches on hydrogel-clay-drug pharmaceutical formulations able to respond to a series of demands for the most diverse applications. Brief descriptions of the different techniques used for the characterization of the obtained complex hybrid materials such as: swelling, TGA, DSC, FTIR, XRD, mechanical, SEM, TEM and biology tests, are also included. Enlightened by the presented data, we can suppose that hydrogel-clay nanocomposites will still be a challenging subject of global assiduous researches. We can dare to dream to an efficient drug delivery platform for the treatment of multiple affection concomitantly, these being undoubtedly like "a tree of life" bearing different kinds of fruits and leaves proper for human healing.


Assuntos
Nanocompostos , Argila , Preparações de Ação Retardada , Humanos , Hidrogéis , Polímeros
19.
Nanomaterials (Basel) ; 8(10)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322127

RESUMO

Silver nanoparticles (AgNPs) are considered a promising alternative to the use of antibiotics in fighting multidrug-resistant pathogens. However, their use in medical application is hindered by the public concern regarding the toxicity of metallic nanoparticles. In this study, rationally designed AgNP were produced, in order to balance the antibacterial activity and toxicity. A facile, environmentally friendly synthesis was used for the electrochemical fabrication of AgNPs. Chitosan was employed as the capping agent, both for the stabilization and to improve the biocompatibility. Size, morphology, composition, capping layer, and stability of the synthesized nanoparticles were characterized. The in vitro biocompatibility and antimicrobial activities of AgNPs against common Gram-negative and Gram-positive bacteria were evaluated. The results revealed that chitosan-stabilized AgNPs were nontoxic to normal fibroblasts, even at high concentrations, compared to bare nanoparticles, while significant antibacterial activity was recorded. The silver colloidal dispersion was further mixed with essential oils (EO) to increase the biological activity. Synergistic effects at some AgNP⁻EO ratios were observed, as demonstrated by the fractionary inhibitory concentration values. Our results reveal that the synergistic action of both polymer-stabilized AgNPs and essential oils could provide a significant efficiency against a large variety of microorganisms, with minimal side effects.

20.
Polymers (Basel) ; 9(8)2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30971046

RESUMO

We focused on preparing cellulose nanofibrils by purification, separation, and mechanical treatment of Kombucha membranes (KM) resulted as secondary product from beverage production by fermentation of tea broth with symbiotic culture of bacteria and yeast (SCOBY). We purified KM using two alkaline solutions, 1 and 4 M NaOH, which afterwards were subjected to various mechanical treatments. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were employed to evaluate the purification degree, the size and aspect of cellulose fibrils after each treatment step, the physical-chemical properties of intermediary and final product, and for comparison with micro-crystalline cellulose from wooden sources. We determined that 1 M NaOH solution leads to approx. 85% purification, while a higher concentration assures almost 97% impurities removal. XRD analysis evidenced an increase in crystallinity from 37% to 87% after purification, the characteristic diffractograms of Iα and Iß cellulose allomorphs, and a further decrease in crystallinity to 46% after microfluidization, fact correlated with a drastically decrease in fibrils' size. FTIR analysis evidenced the appearance of new chain ends by specific transmission bands at 2941 and 2843cm-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA