Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500715

RESUMO

Understanding pore-scale morphology and distribution of remaining oil in pore space are of great importance to carry out in-depth tapping of oil potential. Taking two water-wet cores from a typical clastic reservoir in China as an example, X-ray CT imaging is conducted at different experimental stages of water flooding and polymer-surfactant (P-S) flooding by using a high-resolution X-ray microtomography. Based on X-ray micro-CT image processing, 3D visualization of rock microstructure and fluid distribution at the pore scale is achieved. The integral geometry newly developed is further introduced to characterize pore-scale morphology and distribution of remaining oil in pore space. The underlying mechanism of oil recovery by P-S flooding is further explored. The results show that the average diameter of oil droplets gradually decreases, and the topological connectivity becomes worse after water flooding and P-S flooding. Due to the synergistic effect of "1 + 1 > 2" between the strong sweep efficiency of surfactant and the enlarged swept volume of the polymer, oil droplets with a diameter larger than 124.58 µm can be gradually stripped out by the polymer-surfactant system, causing a more scattered distribution of oil droplets in pore spaces of the cores. The network-like oil clusters are still dominant when water flooding is continued to 98% of water cut, but the dominant pore-scale oil morphology has evolved from network-like to porous-type and isolated-type after P-S flooding, which can provide strong support for further oil recovery in the later stage of chemical flooding.


Assuntos
Petróleo , Surfactantes Pulmonares , Tensoativos , Polímeros , Microtomografia por Raio-X/métodos , Água
2.
Materials (Basel) ; 17(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893807

RESUMO

Titanium alloys face challenges of high temperature oxidation during the service period when used as aircraft engine components. In this paper, the effect of Y2O3 addition on the oxidation behavior and the microstructural change of the Ti6Al4V alloy fabricated by selective laser melting (SLM) was comprehensively studied. The results show that the surface of the Ti6Al4V alloy is a dense oxide layer composed of TiO2 and Al2O3 compounds. The thickness of the oxide layer of the Ti6Al4V increased from 59.55 µm to 139.15 µm. In contrast, with the addition of Y2O3, the thickness of the oxide layer increased from 35.73 µm to 80.34 µm. This indicates that the thickness of the oxide layer formation was a diffusion-controlled process and, therefore, the thickness of the oxide layer increased with an increase in temperature. The Ti6Al4V-1.0 wt.% Y2O3 alloy exhibits excellent oxidation resistance, and the thickness is significantly lower than that of the Ti6Al4V alloy. The oxidation kinetics of the Ti6Al4V and Ti6Al4V-1.0 wt.% Y2O3 alloys at 600 °C and 800 °C follows a parabolic rule, whereas the oxidation of the Ti6Al4V and Ti6Al4V-1.0 wt.% Y2O3 alloys at 1000 °C follows the linear law. The average microhardness values of Ti6Al4V samples after oxidation increased to 818.9 ± 20 HV0.5 with increasing temperature, and the average microhardness values of the Ti6Al4V-1.0 wt.% Y2O3 alloy increases until 800 °C and then decreases at 1000 °C. The addition of Y2O3 shows a significant improvement in the microhardness during the different temperatures after oxidation.

3.
J Mech Behav Biomed Mater ; 112: 104022, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853863

RESUMO

Finite element analysis is a powerful tool for the design of bioresorbable medical implants made of aliphatic polyesters such as bioresorbable vascular scaffolds. However polymer erosion has been traditionally modelled using empirical rules rather than differential equations. The rule-based models are difficult to implement in a finite element analysis. Consequently, these models have been limited to simple geometries such as plates or spheres. This paper presents a set of differential equations that govern the hydrolytic chain scission and bulk erosion of bioresorbable implants where polymer erosion is modelled using a differential equation instead of empirical rules. These differential equations can be conveniently solved using a commercial finite element package to calculate the molecular weight and mass loss as functions of time for bioresorbable implant made of aliphatic polyesters. A case study of Absorb bioresorbable vascular scaffolds (BVSs) is presented using data obtained from the literature, where 98 Absorb BVSs were implanted in 40 porcine coronary arteries. It is demonstrated that the finite element model can fit the data of both molecular weight and mass loss as functions of time to an accuracy of approximately 5%. The finite element model and the back-calculated model parameters can be used to design future implants that degrade in a controlled pattern with required mechanical performance.


Assuntos
Implantes Absorvíveis , Polímeros , Animais , Vasos Coronários , Análise de Elementos Finitos , Poliésteres , Suínos
4.
RSC Adv ; 8(21): 11705-11713, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35542764

RESUMO

This study investigates the effects of alkali and alkaline earth metal (AAEM) species on the combustion characteristics of cattle manures (CM). Different AAEM species (K, Na, Ca, and Mg) were mixed with CM and deashing CM (D-CM) samples. The combustion characteristics of raw and char samples were compared. The effects of AAEM species on CM char were analyzed based on the structural characteristics of the char sample. Results show that K and Na exert a positive effect, and this effect varies depending on the addition amount. Ca and Mg also exhibit a positive effect, but this effect does not change with the addition amount. The positive effect of K, Na, and Ca is related to the decrease in graphitization degree and increase in specific surface area. However, the positive effect of Mg is negligible. In conclusion, CM can be mixed with fuels containing K or Na in an appropriate ratio. The amount of Ca to be mixed with fuels has no specific requirement, whereas that of Mg to be mixed with fuels should be controlled.

5.
Waste Manag ; 58: 144-151, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27659868

RESUMO

Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario.


Assuntos
Solo/química , Condutividade Térmica , Gerenciamento de Resíduos/instrumentação , Desenho de Equipamento , Temperatura Alta , Modelos Teóricos , Gerenciamento de Resíduos/métodos
6.
Biomaterials ; 32(9): 2248-55, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21186057

RESUMO

A saturation behaviour has been observed when incorporating tricalcium phosphate (TCP) in various polyesters to control the degradation rate. This paper presents an understanding of this behaviour using a mathematical model. The coupled process of hydrolysis reaction of the ester bonds, acid dissociation of the carboxylic end groups, dissolution of the calcium phosphates and buffering reactions by the dissolved phosphate ions is modelled together using a set of differential equations. Two non-dimensional groups of the material and chemical parameters are identified which control the degradation rate of the composites. An effectiveness map is established to show the conditions under which incorporating TCP into polyesters is effective, saturated or ineffective. Comparisons are made between the model predictions and existing experimental data in the literature. The map provides a useful tool to guide the design of polyester/TCP composites for tissue engineering and orthopaedic fixation applications.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Ácido Láctico/química , Poliésteres/química , Polímeros/química , Biodegradação Ambiental , Cálcio/análise , Catálise , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Químicos , Peso Molecular , Poliésteres/metabolismo , Prótons , Fatores de Tempo , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA