Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Environ Sci Technol ; 58(6): 2956-2965, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291787

RESUMO

Monitoring nutrients in the soil can provide valuable information for understanding their spatiotemporal variability and informing precise soil management. Here, we describe an autonomous in situ analyzer for the real-time monitoring of nitrate in soil. The analyzer can sample soil nitrate using either microdialysis or ultrafiltration probes placed within the soil and quantify soil nitrate using droplet microfluidics and colorimetric measurement. Compared with traditional manual sampling and lab analysis, the analyzer features low reagent consumption (96 µL per measurement), low maintenance requirement (monthly), and high measurement frequency (2 or 4 measurements per day), providing nondrifting lab-quality data with errors of less than 10% using a microdialysis probe and 2-3% for ultrafiltration. The analyzer was deployed at both the campus garden and forest for different periods of time, being able to capture changes in free nitrate levels in response to manual perturbation by the addition of nitrate standard solutions and natural perturbation by rainfall events.


Assuntos
Microfluídica , Nitratos , Nitratos/análise , Solo , Florestas
2.
Analyst ; 146(14): 4535-4544, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34137757

RESUMO

Point-of-care monitoring of chemical biomarkers in real-time holds great potential in rapid disease diagnostics and precision medicine. However, monitoring is still rare in practice, as the measurement of biomarkers often requires time consuming and labour intensive assay procedures such as enzyme linked immunosorbent assay (ELISA), which pose a challenge to an autonomous point-of-care device. This paper describes a prototype device capable of performing ELISA autonomously and repeatedly in a high frequency using droplet microfluidics. Driven by a specially designed peristaltic pump, the device can collect liquid samples from a reservoir, produce trains of droplets, complete magnetic bead based ELISA protocols and provide readouts with colourimetric measurement. Here, cortisol was chosen as a target analyte as its concentration in the human body varies on a circadian rhythm which may be perturbed by disease. The prototype device draws in and analyses 350 nL of the sample containing free bioactive cortisol every 10 seconds, with a sample-to-signal time of 10 minutes, and measures favourably in the analytical range of 3.175-100 ng ml-1, with reliably lower variability compared with the well plate based assay. As most ELISA type assays share similar procedures, we envisage that this approach could form a platform technology for measurement or even continuous monitoring of biomarkers in biological fluids at the point-of-care.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Ensaio de Imunoadsorção Enzimática , Humanos , Hidrocortisona , Sistemas Automatizados de Assistência Junto ao Leito
3.
Environ Sci Technol ; 53(16): 9677-9685, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31352782

RESUMO

Microfluidic-based chemical sensors take laboratory analytical protocols and miniaturize them into field-deployable systems for in situ monitoring of water chemistry. Here, we present a prototype nitrate/nitrite sensor based on droplet microfluidics that in contrast to standard (continuous phase) microfluidic sensors, treats water samples as discrete droplets contained within a flow of oil. The new sensor device can quantify the concentrations of nitrate and nitrite within each droplet and provides high measurement frequency and low fluid consumption. Reagent consumption is at a rate of 2.8 mL/day when measuring every ten seconds, orders of magnitude more efficient than those of the current state-of-the-art sensors. The sensor's capabilities were demonstrated during a three-week deployment in a tidal river. The accurate and high frequency data (6% error relative to spot samples, measuring at 0.1 Hz) elucidated the influence of tidal variation, rain events, diurnal effects, and anthropogenic input on concentrations at the deployment site. This droplet microfluidic-based sensor is suitable for a wide range of applications such as monitoring of rivers, lakes, coastal waters, and industrial effluents.


Assuntos
Técnicas Analíticas Microfluídicas , Nitritos , Microfluídica , Nitratos , Óxidos de Nitrogênio , Rios
4.
Biomed Microdevices ; 20(4): 92, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30370472

RESUMO

Here a micromachined flow cell with enhanced optical sensitivity is presented that allows high-throughput analysis of microdroplets. As a droplet flows through multiple concatenated measurement points, the rate of enzymatic reaction in the droplet can be fully characterized without stopping the flow. Since there is no cross-talk between the droplets, the flow cell is capable of continuously measuring biochemical assays in a droplet flow and thus is suitable to be used for continuous point-of-care diagnostics monitoring. This paper describes the design and operation of the device and its validation by application to the accurate and continuous quantification of glucose concentrations using an oxidase enzymatic assay. The flow cell forms an important component in the miniaturization of chemical and bio analyzers into portable or wearable devices.


Assuntos
Microtecnologia/instrumentação , Fenômenos Ópticos , Técnicas Biossensoriais , Glucose/análise , Limite de Detecção , Impressão Tridimensional
5.
Analyst ; 141(11): 3266-73, 2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27007645

RESUMO

Droplet microfluidics is ideally suited to continuous biochemical analysis, requiring low sample volumes and offering high temporal resolution. Many biochemical assays are based on enzymatic reactions, the kinetics of which can be obtained by probing droplets at multiple points over time. Here we present a miniaturised multi-detector flow cell to analyse enzyme kinetics in droplets, with an example application of continuous glucose measurement. Reaction rates and Michaelis-Menten kinetics can be quantified for each individual droplet and unknown glucose concentrations can be accurately determined (errors <5%). Droplets can be probed continuously giving short sample-to-result time (∼30 s) measurement. In contrast to previous reports of multipoint droplet measurement (all of which used bulky microscope-based setups) the flow cell presented here has a small footprint and uses low-powered, low-cost components, making it ideally suited for use in field-deployable devices.


Assuntos
Enzimas/análise , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Bioensaio , Cinética
6.
Anal Chem ; 87(7): 3895-901, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25775116

RESUMO

High-throughput, quantitative, and rapid microfluidic-based separations has been a long-sought goal for applications in proteomics, genomics, biomarker discovery, and clinical diagnostics. Using droplet-interfaced microchip electrophoresis (MCE) techniques, we have developed a novel parallel MCE platform, based on the concept of combining the Slipchip principle with a newly developed "Gelchip". The platform consists of two plastic plates, with droplet wells on one plate and separation channels with preloaded/cured gel in the other. A single relative movement of one plate enables generation and then loading of multiple sample droplets in parallel into the separation channels, allowing electrophoretic separation of biomolecules in the droplets in parallel and with high-throughput. As proof of concept, we demonstrated the separation of 30 sub-nL sample droplets containing fluorescent dyes or DNA fragments.


Assuntos
DNA/isolamento & purificação , Corantes Fluorescentes/isolamento & purificação , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Tamanho da Partícula , Propriedades de Superfície
7.
Front Chem ; 12: 1394388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803381

RESUMO

In droplet microfluidics, UV-Vis absorption spectroscopy along with colorimetric assays have been widely used for chemical and biochemical analysis. However, the sensitivity of the measurement can be limited by the short optical pathlength. Here we report a novel design to enhance the sensitivity by removing oil and converting the droplets into a single-phase aqueous flow, which can be measured within a U-shape channel with long optical pathlength. The flow cells were fabricated via 3D printing. The calibration results have demonstrated complete oil removal and effective optical pathlengths similar to the designed channel lengths (from 5 to 20 mm). The flow cell was further employed in a droplet microfluidic-based phosphate sensing system. The measured phosphate levels displayed excellent consistency with data obtained from traditional UV spectroscopy analysis. This flow cell design overcomes the limitations of short optical pathlengths in droplet microfluidics and has the potential to be used for in situ and continuous monitoring.

8.
Anal Chem ; 85(18): 8654-60, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23957576

RESUMO

Both capillary and chip-based electrophoresis are powerful separation methods widely used for the separation of complex analytical mixtures in the fields of genomics, proteomics, metabolomics, and cellular analysis. However their utility as basic tools in high-throughput analysis and multidimensional separations has been hampered by inefficient or biased sample injection methods. Herein, we address this problem through the development of a simple separation platform that incorporates droplet-based microfluidic module for the encapsulation of analytes prior to the analytical separation. This method allows for the precise and reproducible injection of pL to nL volume isolated plugs into an electrophoretic separation channel. The developed platform is free from inter sample contamination, allows for small sample size, high-throughput analysis, and can provide quantitative analytical information.


Assuntos
Eletroforese em Microchip/métodos , Fluoresceína/química , Técnicas Analíticas Microfluídicas/métodos , Água/análise , Eletroforese Capilar/métodos
9.
Anal Chem ; 85(9): 4761-9, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23614771

RESUMO

The ability to miniaturize biochemical assays in water-in-oil emulsion droplets allows a massive scale-down of reaction volumes, so that high-throughput experimentation can be performed more economically and more efficiently. Generating such droplets in compartment-on-demand (COD) platforms is the basis for rapid, automated screening of chemical and biological libraries with minimal volume consumption. Herein, we describe the implementation of such a COD platform to perform high precision nanoliter assays. The coupling of a COD platform to a droplet absorbance detection set-up results in a fully automated analytical system. Michaelis-Menten parameters of 4-nitrophenyl glucopyranoside hydrolysis by sweet almond ß-glucosidase can be generated based on 24 time-courses taken at different substrate concentrations with a total volume consumption of only 1.4 µL. Importantly, kinetic parameters can be derived in a fully unsupervised manner within 20 min: droplet production (5 min), initial reading of the droplet sequence (5 min), and droplet fusion to initiate the reaction and read-out over time (10 min). Similarly, the inhibition of the enzymatic reaction by conduritol B epoxide and 1-deoxynojirimycin was measured, and Ki values were determined. In both cases, the kinetic parameters obtained in droplets were identical within error to values obtained in titer plates, despite a >10(4)-fold volume reduction, from micro- to nanoliters.


Assuntos
Nanotecnologia , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/metabolismo , Cinética , Nanotecnologia/instrumentação , Tamanho da Partícula , Prunus/enzimologia , Fatores de Tempo
10.
Anal Chem ; 85(18): 8866-72, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23937555

RESUMO

We present a fully integrated droplet-based microfluidic platform for the high-throughput assessment of photodynamic therapy photosensitizer (PDT) efficacy on Escherichia coli. The described platform is able to controllably encapsulate cells and photosensitizer within pL-volume droplets, incubate the droplets over the course of several days, add predetermined concentrations of viability assay agents, expose droplets to varying doses of electromagnetic radiation, and detect both live and dead cells online to score cell viability. The viability of cells after encapsulation and incubation is assessed in a direct fashion, and the viability scoring method is compared to model live/dead systems for calibration. Final results are validated against conventional colony forming unit assays. In addition, we show that the platform can be used to perform concurrent measurements of light and dark toxicity of the PDT agents and that the platform allows simultaneous measurement of experimental parameters that include dark toxicity, photosensitizer concentration, light dose, and oxygenation levels for the development and testing of PDT agents.


Assuntos
Fenômenos Eletromagnéticos , Ensaios de Triagem em Larga Escala/métodos , Microfluídica/métodos , Fármacos Fotossensibilizantes/análise , Água/análise , Avaliação Pré-Clínica de Medicamentos/métodos , Fármacos Fotossensibilizantes/metabolismo
11.
Anal Chem ; 84(13): 5801-8, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22656086

RESUMO

Herein, we describe the monolithic integration of a multiphase microfluidic system to a microcapillary gel electrophoresis (µCGE) architecture for the complete isolation and storage of separated analyte bands. Within this platform, analyte molecules are separated using microchannel gel electrophoresis, and the eluted bands are stored in a sequence of approximately 40-600 encapsulating microdroplets. Importantly, employing such a system allows for total control of droplet size, shape, and composition. This approach is utilized to separate, optically detect, and encapsulate two fluorescent analytes from a composite sample mixture. Further to this, we subsequently investigate the potential of the system to be used as a concentration gradient generator through analysis of the segmented analyte bands and droplet composition.

12.
Biochem Soc Trans ; 40(4): 615-23, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22817704

RESUMO

In the present paper, we review and discuss current developments and challenges in the field of droplet-based microfluidics. This discussion includes an assessment of the basic fluid dynamics of segmented flows, material requirements, fundamental unit operations and how integration of functional components can be applied to specific biological problems.


Assuntos
Microfluídica/métodos , Microfluídica/instrumentação
13.
Phys Chem Chem Phys ; 13(12): 5298-303, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21344092

RESUMO

The behaviour of droplets entering a microfluidic chamber designed to house microelectrode detectors for real time analysis of clinical microdialysate is described. We have designed an analysis chamber to collect the droplets produced by multiphase flows of oil and artificial cerebral spinal fluid. The coalescence chamber creates a constant aqueous environment ideal for the placement of microelectrodes avoiding the contamination of the microelectrode surface by oil. A stream of alternating light and dark coloured droplets were filmed as they passed through the chamber using a high speed camera. Image analysis of these videos shows the colour change evolution at each point along the chamber length. The flow in the chamber was simulated using the general solution for Poiseuille flow in a rectangular chamber. It is shown that on the centre line the velocity profile is very close to parabolic, and an expression is presented for the ratio between this centre line velocity and the mean flow velocity as a function of channel aspect ratio. If this aspect ratio of width/height is 2, the ratio of flow velocities closely matches that of Poiseuille flow in a circular tube, with implications for connections between microfluidic channels and connection tubing. The droplets are well mixed as the surface tension at the interface with the oil dominates the viscous forces. However once the droplet coalesces with the solution held in the chamber, the no-slip condition at the walls allows Poiseuille flow to take over. The meniscus at the back of the droplet continues to mix the droplet and acts as a piston until the meniscus stops moving. We have found that the no-slip conditions at the walls of the chamber, create a banding effect which records the history of previous drops. The optimal position for sensors is to be placed at the plane of droplet coalescence ideally at the centre of the channel, where there is an abrupt concentration change leading to a response time ≪16 ms, the compressed frame rate of the video. Further away from this point the response time and sensitivity decrease due to convective dispersion.


Assuntos
Microfluídica/instrumentação , Dimetilpolisiloxanos/química , Microeletrodos , Microfluídica/métodos , Modelos Teóricos , Nylons/química
14.
Lab Chip ; 10(16): 2170-4, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20532270

RESUMO

A versatile approach for the rapid prototyping of microfluidic devices suitable for use with FT-IR spectroscopic imaging is introduced. Device manufacture is based on the direct printing of paraffin onto the surface of an infrared transparent substrate, followed by encapsulation. Key features of this approach are low running costs, rapid production times, simplicity of design modifications and suitability for integration with FT-IR spectroscopic measurements. In the current experiments, the minimum width of channel walls was found to be approximately 120 mum and approximately 200 when a 25 mum and 12 mum spacer is used, respectively. Water and poly(ethylene glycol) are used as model fluids in a laminar flow regime, and are imaged in both transmission and attenuated total reflection (ATR) modes. It is established that adoption of transmission mode measurements yields superior sensitivity whilst the ATR mode is more suitable for quantitative analysis using strong spectral absorption bands. Results indicate that devices manufactured using this approach are suitable for use with in situ FT-IR spectroscopic imaging.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Integração de Sistemas , Desenho de Equipamento , Microtecnologia , Parafina , Polietilenoglicóis , Água
15.
RSC Adv ; 10(51): 30975-30981, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516030

RESUMO

Maintaining a hydrophobic channel surface is critical to ensuring long-term stable flow in droplet microfluidics. Monolithic fluoropolymer chips ensure robust and reliable droplet flow as their native fluorous surfaces naturally preferentially wet fluorocarbon oils and do not deteriorate over time. Their fabrication, however, typically requires expensive heated hydraulic presses that make them inaccessible to many laboratories. Here we describe a method for micropatterning and bonding monolithic fluoropolymer flow cells from a commercially available melt-processable fluoropolymer, Dyneon THV 500GZ, that only requires a standard laboratory oven. Using this technique, we demonstrate the formation of complex microstructures, specifically the fabrication of sensitive absorbance flow cells for probing droplets in flow, featuring path lengths up to 10 mm. The native fluorous channel surface means the flow cells can be operated over extended periods, demonstrated by running droplets continuously through a chip for 16 weeks.

16.
Anal Chem ; 81(17): 7321-5, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19715363

RESUMO

In this paper we describe a universal mechanism for merging multiple aqueous microdroplets within a flowing stream consisting of an oil carrier phase. Our approach involves the use of both a pillar array acting as a passive merging element, as well as built-in electrodes acting as an active merging element. The pillar array enables slowing down and trapping of the droplets via the drainage of the oil phase. This brings adjacent droplets into close proximity. At this point, an electric field applied to the electrodes breaks up the thin oil film surrounding the droplets resulting in merging.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Óleos/química , Água/química , Calibragem , Eletricidade , Eletrodos , Desenho de Equipamento
17.
Nat Commun ; 10(1): 2741, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227695

RESUMO

Knowing how biomarker levels vary within biological fluids over time can produce valuable insight into tissue physiology and pathology, and could inform personalised clinical treatment. We describe here a wearable sensor for monitoring biomolecule levels that combines continuous fluid sampling with in situ analysis using wet-chemical assays (with the specific assay interchangeable depending on the target biomolecule). The microfluidic device employs a droplet flow regime to maximise the temporal response of the device, using a screw-driven push-pull peristaltic micropump to robustly produce nanolitre-sized droplets. The fully integrated sensor is contained within a small (palm-sized) footprint, is fully autonomous, and features high measurement frequency (a measurement every few seconds) meaning deviations from steady-state levels are quickly detected. We demonstrate how the sensor can track perturbed glucose and lactate levels in dermal tissue with results in close agreement with standard off-line analysis and consistent with changes in peripheral blood levels.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Pele/química , Dispositivos Eletrônicos Vestíveis , Biomarcadores/análise , Glicemia/análise , Desenho de Equipamento , Glucose/análise , Voluntários Saudáveis , Humanos , Ácido Láctico/análise , Microdiálise/instrumentação , Microdiálise/métodos , Técnicas Analíticas Microfluídicas/métodos
18.
Lab Chip ; 8(11): 1837-41, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18941682

RESUMO

A novel method is presented for controllably merging aqueous microdroplets within segmented flow microfluidic devices. Our approach involves exploiting the difference in hydrodynamic resistance of the continuous phase and the surface tension of the discrete phase through the use of passive structures contained within a microfluidic channel. Rows of pillars separated by distances smaller than the representative droplet dimension are installed within the fluidic network and define passive merging elements or chambers. Initial experiments demonstrate that such a merging element can controllably adjust the distance between adjacent droplets. In a typical scenario, a droplet will enter the chamber, slow down and stop. It will wait and then merge with the succeeding droplets until the surface tension is overwhelmed by the hydraulic pressure. We show that such a merging process is independent of the inter-droplet separation but rather dependent on the droplet size. Moreover, the number of droplets that can be merged at any time is also dependent on the mass flow rate and volume ratio between the droplets and the merging chamber. Finally, we note that the merging of droplet interfaces occurs within both compressing and the decompressing regimes.


Assuntos
Microfluídica/instrumentação , Pressão , Propriedades de Superfície
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(6 Pt 2): 066305, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19256943

RESUMO

Electrorheological (ER) fluids are a type of ''smart'' colloid capable of reversible viscosity variations, or even solidification, in response to an applied electric field. The response time can be as short as a few milliseconds. By using the ER fluid as the carrier fluid in microfluidic chips, we report the generation and manipulation of microdroplets and bubbles via integrated, digitally controlled micro-electrodes equipped with a feedback system. By utilizing the strong electric response of the ER fluid, the flow rate can be easily controlled digitally, thereby making tunable the size of the droplets generated and their separations. In particular, ordering change in a chain of droplets is demonstrated. The maneuverability presented in this paper may have potential applications in a variety of lab chips for chemical reactions, bioassays, as well as microfluidic logic computation.

20.
Lab Chip ; 18(13): 1903-1913, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29877549

RESUMO

In droplet microfluidics, droplets have traditionally been considered discrete self-contained reaction chambers, however recent work has shown that dissolved solutes can transfer into the oil phase and migrate into neighbouring droplets under certain conditions. The majority of reports on such inter-droplet "crosstalk" have focused on surfactant-driven mechanisms, such as transport within micelles. While trialling a droplet-based system for quantifying nitrate in water, we encountered crosstalk driven by a very different mechanism: conversion of the analyte to a gaseous intermediate which subsequently diffused between droplets. Importantly we found that the crosstalk occurred predictably, could be experimentally quantified, and measurements rationally post-corrected. This showed that droplet microfluidic systems susceptible to crosstalk such as this can nonetheless be used for quantitative analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA