Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(7): 1316-1328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38918605

RESUMO

Contemporary pose estimation methods enable precise measurements of behavior via supervised deep learning with hand-labeled video frames. Although effective in many cases, the supervised approach requires extensive labeling and often produces outputs that are unreliable for downstream analyses. Here, we introduce 'Lightning Pose', an efficient pose estimation package with three algorithmic contributions. First, in addition to training on a few labeled video frames, we use many unlabeled videos and penalize the network whenever its predictions violate motion continuity, multiple-view geometry and posture plausibility (semi-supervised learning). Second, we introduce a network architecture that resolves occlusions by predicting pose on any given frame using surrounding unlabeled frames. Third, we refine the pose predictions post hoc by combining ensembling and Kalman smoothing. Together, these components render pose trajectories more accurate and scientifically usable. We released a cloud application that allows users to label data, train networks and process new videos directly from the browser.


Assuntos
Algoritmos , Teorema de Bayes , Gravação em Vídeo , Animais , Gravação em Vídeo/métodos , Aprendizado de Máquina Supervisionado , Computação em Nuvem , Software , Postura/fisiologia , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Comportamento Animal
2.
PLoS Biol ; 19(5): e3001215, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979326

RESUMO

Perceptual anomalies in individuals with autism spectrum disorder (ASD) have been attributed to an imbalance in weighting incoming sensory evidence with prior knowledge when interpreting sensory information. Here, we show that sensory encoding and how it adapts to changing stimulus statistics during feedback also characteristically differs between neurotypical and ASD groups. In a visual orientation estimation task, we extracted the accuracy of sensory encoding from psychophysical data by using an information theoretic measure. Initially, sensory representations in both groups reflected the statistics of visual orientations in natural scenes, but encoding capacity was overall lower in the ASD group. Exposure to an artificial (i.e., uniform) distribution of visual orientations coupled with performance feedback altered the sensory representations of the neurotypical group toward the novel experimental statistics, while also increasing their total encoding capacity. In contrast, neither total encoding capacity nor its allocation significantly changed in the ASD group. Across both groups, the degree of adaptation was correlated with participants' initial encoding capacity. These findings highlight substantial deficits in sensory encoding-independent from and potentially in addition to deficits in decoding-in individuals with ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Percepção Visual/fisiologia , Adolescente , Transtorno do Espectro Autista/metabolismo , Humanos , Masculino , Modelos Teóricos
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33798099

RESUMO

The ability to identify our own body and its boundaries is crucial for survival. Ideally, the sooner we learn to discriminate external stimuli occurring close to our body from those occurring far from it, the better (and safer) we may interact with the sensory environment. However, when this mechanism emerges within ontogeny is unknown. Is it something acquired throughout infancy, or is it already present soon after birth? The presence of a spatial modulation of multisensory integration (MSI) is considered a hallmark of a functioning representation of the body position in space. Here, we investigated whether MSI is present and spatially organized in 18- to 92-h-old newborns. We compared electrophysiological responses to tactile stimulation when concurrent auditory events were delivered close to, as opposed to far from, the body in healthy newborns and in a control group of adult participants. In accordance with previous studies, adult controls showed a clear spatial modulation of MSI, with greater superadditive responses for multisensory stimuli close to the body. In newborns, we demonstrated the presence of a genuine electrophysiological pattern of MSI, with older newborns showing a larger MSI effect. Importantly, as for adults, multisensory superadditive responses were modulated by the proximity to the body. This finding may represent the electrophysiological mechanism responsible for a primitive coding of bodily self boundaries, thus suggesting that even just a few hours after birth, human newborns identify their own body as a distinct entity from the environment.


Assuntos
Encéfalo/fisiologia , Fenômenos Eletrofisiológicos , Estimulação Física , Percepção Espacial/fisiologia , Eletroencefalografia , Humanos , Recém-Nascido , Aprendizagem , Tempo de Reação
4.
J Neurosci ; 42(27): 5451-5462, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35641186

RESUMO

Sensory evidence accumulation is considered a hallmark of decision-making in noisy environments. Integration of sensory inputs has been traditionally studied using passive stimuli, segregating perception from action. Lessons learned from this approach, however, may not generalize to ethological behaviors like navigation, where there is an active interplay between perception and action. We designed a sensory-based sequential decision task in virtual reality in which humans and monkeys navigated to a memorized location by integrating optic flow generated by their own joystick movements. A major challenge in such closed-loop tasks is that subjects' actions will determine future sensory input, causing ambiguity about whether they rely on sensory input rather than expectations based solely on a learned model of the dynamics. To test whether subjects integrated optic flow over time, we used three independent experimental manipulations, unpredictable optic flow perturbations, which pushed subjects off their trajectory; gain manipulation of the joystick controller, which changed the consequences of actions; and manipulation of the optic flow density, which changed the information borne by sensory evidence. Our results suggest that both macaques (male) and humans (female/male) relied heavily on optic flow, thereby demonstrating a critical role for sensory evidence accumulation during naturalistic action-perception closed-loop tasks.SIGNIFICANCE STATEMENT The temporal integration of evidence is a fundamental component of mammalian intelligence. Yet, it has traditionally been studied using experimental paradigms that fail to capture the closed-loop interaction between actions and sensations inherent in real-world continuous behaviors. These conventional paradigms use binary decision tasks and passive stimuli with statistics that remain stationary over time. Instead, we developed a naturalistic visuomotor visual navigation paradigm that mimics the causal structure of real-world sensorimotor interactions and probed the extent to which participants integrate sensory evidence by adding task manipulations that reveal complementary aspects of the computation.


Assuntos
Fluxo Óptico , Animais , Feminino , Humanos , Masculino , Mamíferos , Movimento
5.
J Neurosci ; 42(45): 8450-8459, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351831

RESUMO

Since the discovery of conspicuously spatially tuned neurons in the hippocampal formation over 50 years ago, characterizing which, where, and how neurons encode navigationally relevant variables has been a major thrust of navigational neuroscience. While much of this effort has centered on the hippocampal formation and functionally-adjacent structures, recent work suggests that spatial codes, in some form or another, can be found throughout the brain, even in areas traditionally associated with sensation, movement, and executive function. In this review, we highlight these unexpected results, draw insights from comparison of these codes across contexts, regions, and species, and finally suggest an avenue for future work to make sense of these diverse and dynamic navigational codes.


Assuntos
Navegação Espacial , Navegação Espacial/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Hipocampo/fisiologia , Neurônios/fisiologia
6.
PLoS Comput Biol ; 18(9): e1010464, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36103520

RESUMO

Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them-thus delineating our peripersonal space (PPS)-may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli-but critically is still present for receding stimuli when observation uncertainty is non-zero-, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies.


Assuntos
Espaço Pessoal , Percepção do Tato , Teorema de Bayes , Neurônios , Percepção Espacial/fisiologia , Tato/fisiologia , Percepção do Tato/fisiologia
7.
Annu Rev Psychol ; 73: 103-129, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34546803

RESUMO

Navigating by path integration requires continuously estimating one's self-motion. This estimate may be derived from visual velocity and/or vestibular acceleration signals. Importantly, these senses in isolation are ill-equipped to provide accurate estimates, and thus visuo-vestibular integration is an imperative. After a summary of the visual and vestibular pathways involved, the crux of this review focuses on the human and theoretical approaches that have outlined a normative account of cue combination in behavior and neurons, as well as on the systems neuroscience efforts that are searching for its neural implementation. We then highlight a contemporary frontier in our state of knowledge: understanding how velocity cues with time-varying reliabilities are integrated into an evolving position estimate over prolonged time periods. Further, we discuss how the brain builds internal models inferring when cues ought to be integrated versus segregated-a process of causal inference. Lastly, we suggest that the study of spatial navigation has not yet addressed its initial condition: self-location.


Assuntos
Percepção de Movimento , Neurociências , Encéfalo/fisiologia , Cognição , Sinais (Psicologia) , Humanos , Percepção de Movimento/fisiologia
8.
Proc Natl Acad Sci U S A ; 117(20): 11158-11166, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358192

RESUMO

Autism Spectrum Disorder (ASD) is a common neurodevelopmental disturbance afflicting a variety of functions. The recent computational focus suggesting aberrant Bayesian inference in ASD has yielded promising but conflicting results in attempting to explain a wide variety of phenotypes by canonical computations. Here, we used a naturalistic visual path integration task that combines continuous action with active sensing and allows tracking of subjects' dynamic belief states. Both groups showed a previously documented bias pattern by overshooting the radial distance and angular eccentricity of targets. For both control and ASD groups, these errors were driven by misestimated velocity signals due to a nonuniform speed prior rather than imperfect integration. We tracked participants' beliefs and found no difference in the speed prior, but there was heightened variability in the ASD group. Both end point variance and trajectory irregularities correlated with ASD symptom severity. With feedback, variance was reduced, and ASD performance approached that of controls. These findings highlight the need for both more naturalistic tasks and a broader computational perspective to understand the ASD phenotype and pathology.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/fisiopatologia , Adolescente , Teorema de Bayes , Criança , Humanos , Modelos Neurológicos , Percepção de Movimento/fisiologia , Estimulação Luminosa
9.
PLoS Comput Biol ; 17(9): e1009439, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34550974

RESUMO

Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.


Assuntos
Algoritmos , Inteligência Artificial/estatística & dados numéricos , Comportamento Animal , Gravação em Vídeo , Animais , Biologia Computacional , Simulação por Computador , Cadeias de Markov , Camundongos , Modelos Estatísticos , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado/estatística & dados numéricos , Aprendizado de Máquina não Supervisionado/estatística & dados numéricos , Gravação em Vídeo/estatística & dados numéricos
10.
Exp Brain Res ; 239(5): 1639-1649, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33770219

RESUMO

Peripersonal space (PPS) is the space immediately surrounding the body, conceptualised as a sensory-motor interface between body and environment. PPS size differs between individuals and contexts, with intrapersonal traits and states, as well as social factors having a determining role on the size of PPS. Testosterone plays an important role in regulating social-motivational behaviour and is known to enhance dominance motivation in an implicit and unconscious manner. We investigated whether the dominance-enhancing effects of testosterone reflect as changes in the representation of PPS in a within-subjects testosterone administration study in women (N = 19). Participants performed a visuo-tactile integration task in a mixed-reality setup. Results indicated that the administration of testosterone caused a significant enlargement of participants' PPS, suggesting that testosterone caused participants to implicitly appropriate a larger space as their own. These findings suggest that the dominance-enhancing effects of testosterone reflect at the level of sensory-motor processing in PPS.


Assuntos
Espaço Pessoal , Percepção do Tato , Feminino , Humanos , Estimulação Física , Percepção Espacial , Testosterona , Tato
11.
Cereb Cortex ; 30(9): 5088-5106, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32377673

RESUMO

Interactions between individuals and the environment occur within the peri-personal space (PPS). The encoding of this space plastically adapts to bodily constraints and stimuli features. However, these remapping effects have not been demonstrated on an adaptive time-scale, trial-to-trial. Here, we test this idea first via a visuo-tactile reaction time (RT) paradigm in augmented reality where participants are asked to respond as fast as possible to touch, as visual objects approach them. Results demonstrate that RTs to touch are facilitated as a function of visual proximity, and the sigmoidal function describing this facilitation shifts closer to the body if the immediately precedent trial had indexed a smaller visuo-tactile disparity. Next, we derive the electroencephalographic correlates of PPS and demonstrate that this multisensory measure is equally shaped by recent sensory history. Finally, we demonstrate that a validated neural network model of PPS is able to account for the present results via a simple Hebbian plasticity rule. The present findings suggest that PPS encoding remaps on a very rapid time-scale and, more generally, that it is sensitive to sensory history, a key feature for any process contextualizing subsequent incoming sensory information (e.g., a Bayesian prior).


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Espaço Pessoal , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Tempo de Reação , Percepção do Tato/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
12.
J Neurosci ; 39(38): 7485-7500, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31358654

RESUMO

Both the global neuronal workspace (GNW) and integrated information theory (IIT) posit that highly complex and interconnected networks engender perceptual awareness. GNW specifies that activity recruiting frontoparietal networks will elicit a subjective experience, whereas IIT is more concerned with the functional architecture of networks than with activity within it. Here, we argue that according to IIT mathematics, circuits converging on integrative versus convergent yet non-integrative neurons should support a greater degree of consciousness. We test this hypothesis by analyzing a dataset of neuronal responses collected simultaneously from primary somatosensory cortex (S1) and ventral premotor cortex (vPM) in nonhuman primates presented with auditory, tactile, and audio-tactile stimuli as they are progressively anesthetized with propofol. We first describe the multisensory (audio-tactile) characteristics of S1 and vPM neurons (mean and dispersion tendencies, as well as noise-correlations), and functionally label these neurons as convergent or integrative according to their spiking responses. Then, we characterize how these different pools of neurons behave as a function of consciousness. At odds with the IIT mathematics, results suggest that convergent neurons more readily exhibit properties of consciousness (neural complexity and noise correlation) and are more impacted during the loss of consciousness than integrative neurons. Last, we provide support for the GNW by showing that neural ignition (i.e., same trial coactivation of S1 and vPM) was more frequent in conscious than unconscious states. Overall, we contrast GNW and IIT within the same single-unit activity dataset, and support the GNW.SIGNIFICANCE STATEMENT A number of prominent theories of consciousness exist, and a number of these share strong commonalities, such as the central role they ascribe to integration. Despite the important and far reaching consequences developing a better understanding of consciousness promises to bring, for instance in diagnosing disorders of consciousness (e.g., coma, vegetative-state, locked-in syndrome), these theories are seldom tested via invasive techniques (with high signal-to-noise ratios), and never directly confronted within a single dataset. Here, we first derive concrete and testable predictions from the global neuronal workspace and integrated information theory of consciousness. Then, we put these to the test by functionally labeling specific neurons as either convergent or integrative nodes, and examining the response of these neurons during anesthetic-induced loss of consciousness.


Assuntos
Estado de Consciência/fisiologia , Modelos Neurológicos , Modelos Teóricos , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Macaca mulatta , Masculino
13.
J Cogn Neurosci ; 31(8): 1155-1172, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30188779

RESUMO

The actionable space surrounding the body, referred to as peripersonal space (PPS), has been the subject of significant interest of late within the broader framework of embodied cognition. Neurophysiological and neuroimaging studies have shown the representation of PPS to be built from visuotactile and audiotactile neurons within a frontoparietal network and whose activity is modulated by the presence of stimuli in proximity to the body. In contrast to single-unit and fMRI studies, an area of inquiry that has received little attention is the EEG characterization associated with PPS processing. Furthermore, although PPS is encoded by multisensory neurons, to date there has been no EEG study systematically examining neural responses to unisensory and multisensory stimuli, as these are presented outside, near, and within the boundary of PPS. Similarly, it remains poorly understood whether multisensory integration is generally more likely at certain spatial locations (e.g., near the body) or whether the cross-modal tactile facilitation that occurs within PPS is simply due to a reduction in the distance between sensory stimuli when close to the body and in line with the spatial principle of multisensory integration. In the current study, to examine the neural dynamics of multisensory processing within and beyond the PPS boundary, we present auditory, visual, and audiovisual stimuli at various distances relative to participants' reaching limit-an approximation of PPS-while recording continuous high-density EEG. We question whether multisensory (vs. unisensory) processing varies as a function of stimulus-observer distance. Results demonstrate a significant increase of global field power (i.e., overall strength of response across the entire electrode montage) for stimuli presented at the PPS boundary-an increase that is largest under multisensory (i.e., audiovisual) conditions. Source localization of the major contributors to this global field power difference suggests neural generators in the intraparietal sulcus and insular cortex, hubs for visuotactile and audiotactile PPS processing. Furthermore, when neural dynamics are examined in more detail, changes in the reliability of evoked potentials in centroparietal electrodes are predictive on a subject-by-subject basis of the later changes in estimated current strength at the intraparietal sulcus linked to stimulus proximity to the PPS boundary. Together, these results provide a previously unrealized view into the neural dynamics and temporal code associated with the encoding of nontactile multisensory around the PPS boundary.


Assuntos
Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Potenciais Evocados/fisiologia , Espaço Pessoal , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Lobo Parietal/fisiologia , Adulto Jovem
14.
Cereb Cortex ; 28(9): 3385-3397, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010843

RESUMO

Interactions with the environment happen within one's peripersonal space (PPS)-the space surrounding the body. Studies in monkeys and humans have highlighted a multisensory distributed cortical network representing the PPS. However, knowledge about the temporal dynamics of PPS processing around the trunk is lacking. Here, we recorded intracranial electroencephalography (iEEG) in humans while administering tactile stimulation (T), approaching auditory stimuli (A), and the 2 combined (AT). To map PPS, tactile stimulation was delivered when the sound was far, intermediate, or close to the body. The 19% of the electrodes showed AT multisensory integration. Among those, 30% showed a PPS effect, a modulation of the response as a function of the distance between the sound and body. AT multisensory integration and PPS effects had similar spatiotemporal characteristics, with an early response (~50 ms) in the insular cortex, and later responses (~200 ms) in precentral and postcentral gyri. Superior temporal cortex showed a different response pattern with AT multisensory integration at ~100 ms without a PPS effect. These results, represent the first iEEG delineation of PPS processing in humans and show that PPS and multisensory integration happen at similar neural sites and time periods, suggesting that PPS representation is based on a spatial modulation of multisensory integration.


Assuntos
Lobo Parietal/fisiologia , Espaço Pessoal , Percepção Espacial/fisiologia , Lobo Temporal/fisiologia , Estimulação Acústica , Adulto , Eletrocorticografia , Feminino , Humanos , Masculino , Estimulação Física , Localização de Som/fisiologia , Tronco , Percepção do Tato/fisiologia
15.
J Cogn Neurosci ; 30(6): 814-828, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29488853

RESUMO

The neural underpinnings of perceptual awareness have been extensively studied using unisensory (e.g., visual alone) stimuli. However, perception is generally multisensory, and it is unclear whether the neural architecture uncovered in these studies directly translates to the multisensory domain. Here, we use EEG to examine brain responses associated with the processing of visual, auditory, and audiovisual stimuli presented near threshold levels of detectability, with the aim of deciphering similarities and differences in the neural signals indexing the transition into perceptual awareness across vision, audition, and combined visual-auditory (multisensory) processing. More specifically, we examine (1) the presence of late evoked potentials (∼>300 msec), (2) the across-trial reproducibility, and (3) the evoked complexity associated with perceived versus nonperceived stimuli. Results reveal that, although perceived stimuli are associated with the presence of late evoked potentials across each of the examined sensory modalities, between-trial variability and EEG complexity differed for unisensory versus multisensory conditions. Whereas across-trial variability and complexity differed for perceived versus nonperceived stimuli in the visual and auditory conditions, this was not the case for the multisensory condition. Taken together, these results suggest that there are fundamental differences in the neural correlates of perceptual awareness for unisensory versus multisensory stimuli. Specifically, the work argues that the presence of late evoked potentials, as opposed to neural reproducibility or complexity, most closely tracks perceptual awareness regardless of the nature of the sensory stimulus. In addition, the current findings suggest a greater similarity between the neural correlates of perceptual awareness of unisensory (visual and auditory) stimuli when compared with multisensory stimuli.


Assuntos
Percepção Auditiva/fisiologia , Conscientização/fisiologia , Encéfalo/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Eletroencefalografia , Potenciais Evocados Auditivos , Potenciais Evocados Visuais , Feminino , Humanos , Masculino , Estimulação Luminosa , Psicofísica , Tempo de Reação , Adulto Jovem
16.
J Neurophysiol ; 119(6): 2307-2333, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29537917

RESUMO

Interactions between the body and the environment occur within the peripersonal space (PPS), the space immediately surrounding the body. The PPS is encoded by multisensory (audio-tactile, visual-tactile) neurons that possess receptive fields (RFs) anchored on the body and restricted in depth. The extension in depth of PPS neurons' RFs has been documented to change dynamically as a function of the velocity of incoming stimuli, but the underlying neural mechanisms are still unknown. Here, by integrating a psychophysical approach with neural network modeling, we propose a mechanistic explanation behind this inherent dynamic property of PPS. We psychophysically mapped the size of participant's peri-face and peri-trunk space as a function of the velocity of task-irrelevant approaching auditory stimuli. Findings indicated that the peri-trunk space was larger than the peri-face space, and, importantly, as for the neurophysiological delineation of RFs, both of these representations enlarged as the velocity of incoming sound increased. We propose a neural network model to mechanistically interpret these findings: the network includes reciprocal connections between unisensory areas and higher order multisensory neurons, and it implements neural adaptation to persistent stimulation as a mechanism sensitive to stimulus velocity. The network was capable of replicating the behavioral observations of PPS size remapping and relates behavioral proxies of PPS size to neurophysiological measures of multisensory neurons' RF size. We propose that a biologically plausible neural adaptation mechanism embedded within the network encoding for PPS can be responsible for the dynamic alterations in PPS size as a function of the velocity of incoming stimuli. NEW & NOTEWORTHY Interactions between body and environment occur within the peripersonal space (PPS). PPS neurons are highly dynamic, adapting online as a function of body-object interactions. The mechanistic underpinning PPS dynamic properties are unexplained. We demonstrate with a psychophysical approach that PPS enlarges as incoming stimulus velocity increases, efficiently preventing contacts with faster approaching objects. We present a neurocomputational model of multisensory PPS implementing neural adaptation to persistent stimulation to propose a neurophysiological mechanism underlying this effect.


Assuntos
Adaptação Fisiológica , Modelos Neurológicos , Neurônios/fisiologia , Percepção , Espaço Pessoal , Adulto , Feminino , Humanos , Masculino , Córtex Sensório-Motor/citologia , Córtex Sensório-Motor/fisiologia , Campos Visuais
17.
Eur J Neurosci ; 47(7): 800-811, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29461657

RESUMO

Human-environment interactions are mediated through the body and occur within the peripersonal space (PPS), the space immediately adjacent to and surrounding the body. The PPS is taken to be a critical interface between the body and the environment, and indeed, body-part specific PPS remapping has been shown to depend on body-part utilization, such as upper limb movements in otherwise static observers. How vestibular signals induced by whole-body movement contribute to PPS representation is less well understood. In a series of experiments, we mapped the spatial extension of the PPS around the head while participants were submitted to passive whole-body rotations inducing vestibular stimulation. Forty-six participants, in three experiments, executed a tactile detection reaction time task while task-irrelevant auditory stimuli approached them. The maximal distance at which the auditory stimulus facilitated tactile reaction time was taken as a proxy for the boundary of peri-head space. The present results indicate two distinct vestibular effects. First, vestibular stimulation speeded tactile detection indicating a vestibular facilitation of somatosensory processing. Second, vestibular stimulation modulated audio-tactile interaction of peri-head space in a rotation direction-specific manner. Congruent but not incongruent audio-vestibular motion stimuli expanded the PPS boundary further away from the body as compared to no rotation. These results show that vestibular inputs dynamically update the multisensory delineation of PPS and far space, which may serve to maintain accurate tracking of objects close to the body and to update spatial self-representations.


Assuntos
Espaço Pessoal , Vestíbulo do Labirinto/fisiologia , Estimulação Acústica , Adolescente , Adulto , Feminino , Humanos , Masculino , Estimulação Física , Tempo de Reação/fisiologia , Rotação , Percepção Espacial/fisiologia , Percepção do Tato/fisiologia , Adulto Jovem
18.
Eur J Neurosci ; 47(10): 1230-1241, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29575155

RESUMO

Binding across sensory modalities yields substantial perceptual benefits, including enhanced speech intelligibility. The coincidence of sensory inputs across time is a fundamental cue for this integration process. Recent work has suggested that individuals with diagnoses of schizophrenia (SZ) and autism spectrum disorder (ASD) will characterize auditory and visual events as synchronous over larger temporal disparities than their neurotypical counterparts. Namely, these clinical populations possess an enlarged temporal binding window (TBW). Although patients with SZ and ASD share aspects of their symptomatology, phenotypic similarities may result from distinct etiologies. To examine similarities and variances in audiovisual temporal function in these two populations, individuals diagnosed with ASD (n = 46; controls n = 40) and SZ (n = 16, controls = 16) completed an audiovisual simultaneity judgment task. In addition to standard psychometric analyses, synchrony judgments were assessed using Bayesian causal inference modeling. This approach permits distinguishing between distinct causes of an enlarged TBW: an a priori bias to bind sensory information and poor fidelity in the sensory representation. Findings indicate that both ASD and SZ populations show deficits in multisensory temporal acuity. Importantly, results suggest that while the wider TBWs in ASD most prominently results from atypical priors, the wider TBWs in SZ results from a trend toward changes in prior and weaknesses in the sensory representations. Results are discussed in light of current ASD and SZ theories and highlight that different perceptual training paradigms focused on improving multisensory integration may be most effective in these two clinical populations and emphasize that similar phenotypes may emanate from distinct mechanistic causes.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Reconhecimento Visual de Modelos/fisiologia , Transtornos da Percepção/fisiopatologia , Esquizofrenia/fisiopatologia , Percepção da Fala/fisiologia , Percepção do Tempo/fisiologia , Adolescente , Adulto , Transtorno do Espectro Autista/complicações , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos da Percepção/etiologia , Fenótipo , Esquizofrenia/complicações
19.
Exp Brain Res ; 236(7): 1939-1951, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29700577

RESUMO

The integration of information across sensory modalities is dependent on the spatiotemporal characteristics of the stimuli that are paired. Despite large variation in the distance over which events occur in our environment, relatively little is known regarding how stimulus-observer distance affects multisensory integration. Prior work has suggested that exteroceptive stimuli are integrated over larger temporal intervals in near relative to far space, and that larger multisensory facilitations are evident in far relative to near space. Here, we sought to examine the interrelationship between these previously established distance-related features of multisensory processing. Participants performed an audiovisual simultaneity judgment and redundant target task in near and far space, while audiovisual stimuli were presented at a range of temporal delays (i.e., stimulus onset asynchronies). In line with the previous findings, temporal acuity was poorer in near relative to far space. Furthermore, reaction time to asynchronously presented audiovisual targets suggested a temporal window for fast detection-a range of stimuli asynchronies that was also larger in near as compared to far space. However, the range of reaction times over which multisensory response enhancement was observed was limited to a restricted range of relatively small (i.e., 150 ms) asynchronies, and did not differ significantly between near and far space. Furthermore, for synchronous presentations, these distance-related (i.e., near vs. far) modulations in temporal acuity and multisensory gain correlated negatively at an individual subject level. Thus, the findings support the conclusion that multisensory temporal binding and gain are asymmetrically modulated as a function of distance from the observer, and specifies that this relationship is specific for temporally synchronous audiovisual stimulus presentations.


Assuntos
Percepção Auditiva/fisiologia , Percepção de Distância/fisiologia , Julgamento/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adolescente , Adulto , Análise de Variância , Correlação de Dados , Feminino , Humanos , Masculino , Estimulação Luminosa , Psicofísica , Tempo de Reação , Fatores de Tempo , Adulto Jovem
20.
Conscious Cogn ; 61: 61-75, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29653377

RESUMO

Self-perception is scaffolded upon the integration of multisensory cues on the body, the space surrounding the body (i.e., the peri-personal space; PPS), and from within the body. We asked whether reducing information available from external space would change: PPS, interoceptive accuracy, and self-experience. Twenty participants were exposed to 15 min of audio-visual deprivation and performed: (i) a visuo-tactile interaction task measuring their PPS; (ii) a heartbeat perception task measuring interoceptive accuracy; and (iii) a series of questionnaires related to self-perception and mental illness. These tasks were carried out in two conditions: while exposed to a standard sensory environment and under a condition of audio-visual deprivation. Results suggest that while PPS becomes ill defined after audio-visual deprivation, interoceptive accuracy is unaltered at a group-level, with some participants improving and some worsening in interoceptive accuracy. Interestingly, correlational individual differences analyses revealed that changes in PPS after audio-visual deprivation were related to interoceptive accuracy and self-reports of "unusual experiences" on an individual subject basis. Taken together, the findings argue for a relationship between the malleability of PPS, interoceptive accuracy, and an inclination toward aberrant ideation often associated with mental illness.


Assuntos
Percepção Auditiva/fisiologia , Interocepção/fisiologia , Espaço Pessoal , Privação Sensorial/fisiologia , Percepção do Tato/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA