Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Histochem Cell Biol ; 158(1): 65-78, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35486179

RESUMO

A few long noncoding RNAs (long ncRNAs, lncRNAs) exhibit trophoblast cell type-specific expression patterns and functional roles in mouse placenta. However, the cell- and stage-specific expression patterns and functions of most placenta-derived lncRNAs remain unclear. In this study, we explored mouse placenta-associated lncRNAs using a combined bioinformatic and experimental approach. We used the FANTOM5 database to survey lncRNA expression in mouse placenta and found that 1600012P17Rik (MGI: 1919275, designated P17Rik), a long intergenic ncRNA, was the most highly expressed lncRNA at gestational day 17. Polymerase chain reaction analysis confirmed that P17Rik was exclusively expressed in placenta and not in any of the adult organs examined in this study. In situ hybridization analysis revealed that it was highly expressed in spongiotrophoblast cells and to a lesser extent in glycogen trophoblast cells, including migratory glycogen trophoblast cells invading the decidua. Moreover, we found that it is a polyadenylated lncRNA localized mainly to the cytoplasm of these trophoblast cells. As these trophoblast cells also expressed the neighboring protein-coding gene, pappalysin 2 (Pappa2), we investigated the effects of P17Rik on Pappa2 expression using Pappa2-expressing MC3T3-E1 cells and found that P17Rik transfection increased the messenger RNA (mRNA) and protein levels of Pappa2. These results indicate that mouse placenta-specific lncRNA P17Rik modulates the expression of the neighboring protein-coding gene Pappa2 in spongiotrophoblast and glycogen trophoblast cells of mouse placenta during late gestation.


Assuntos
RNA Longo não Codificante , Trofoblastos , Animais , Feminino , Glicogênio/metabolismo , Hibridização In Situ , Camundongos , Gravidez , Proteína Plasmática A Associada à Gravidez/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Trofoblastos/metabolismo
2.
BMC Vet Res ; 17(1): 147, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827546

RESUMO

BACKGROUND: Canine malignant melanoma is highly aggressive and generally chemoresistant. Toceranib is a kinase inhibitor drug that inhibits several tyrosine kinases including the proto-oncogene receptor tyrosine kinase KIT. Although canine malignant melanoma cells often express KIT, a therapeutic effect for toceranib has yet to be reported for this tumor, with only a small number of patients studied to date. This is a case report of a dog with malignant melanoma that experienced a transient response to toceranib. Furthermore, the KIT expressed in the tumor of this case was examined using molecular analysis. CASE PRESENTATION: A Shiba Inu dog presented with a gingival malignant melanoma extending into surrounding structures with metastasis to a submandibular lymph node. The dog was treated with toceranib (Palladia®; 2.6-2.9 mg/kg, orally, every other day) alone. Improvement of tumor-associated clinical signs (e.g., halitosis, tumor hemorrhage, trismus, and facial edema) with reduced size of the metastatic lymph node was observed on Day 15. The gingival tumor and associated masses in the masseter and pterygoid muscles decreased in size by Day 29 of treatment. Toceranib treatment was terminated on Day 43 due to disease progression and the dog died on Day 54. The tumor of this dog had a novel deletion mutation c.1725_1733del within KIT and the mutation caused ligand-independent phosphorylation of KIT, which was suppressed by toceranib. This mutation was considered to be an oncogenic driver mutation in the tumor of this dog, thereby explaining the anti-tumor activity of toceranib. CONCLUSIONS: This is the first report that presents a canine case of malignant melanoma that responded to toceranib therapy. KIT encoded by KIT harboring a mutation c.1725_1733del is a potential therapeutic target for toceranib in canine malignant melanoma. Further investigation of the KIT mutation status and toceranib therapy in canine malignant melanoma will need to be undertaken.


Assuntos
Antineoplásicos/uso terapêutico , Doenças do Cão/tratamento farmacológico , Neoplasias Gengivais/veterinária , Indóis/uso terapêutico , Melanoma/veterinária , Proteínas Proto-Oncogênicas c-kit/genética , Pirróis/uso terapêutico , Animais , Sequência de Bases , Doenças do Cão/patologia , Cães , Deleção de Genes , Predisposição Genética para Doença , Neoplasias Gengivais/tratamento farmacológico , Neoplasias Gengivais/patologia , Metástase Linfática , Masculino , Melanoma/tratamento farmacológico , Melanoma/patologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Vet Pathol ; 57(3): 432-436, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32148182

RESUMO

A 10-year-old female Papillon dog that had previously developed a mammary tumor was admitted for treatment of a hypoglycemic attack. Blood examination showed severe hypoglycemia and decreased blood insulin concentration. Computed tomography indicated multiple tumors in the cranial and caudal lobes of the right lung. These tumors were resected surgically and diagnosed as pulmonary adenocarcinomas by histopathologic examination. Hypoglycemia was temporarily improved after the resection, but a hypoglycemic event occurred 2 months after the surgery. Immunohistochemistry of the tumor demonstrated the expression of insulin-like growth factor 2 in tumor cells. Western blot analysis revealed the expression of high-molecular-weight (big)-insulin-like growth factor 2 in the tumor region. Insulin-like growth factor 2 mRNA expression was also confirmed in the tumor using reverse transcription-polymerase chain reaction. These findings indicate the diagnosis of non-islet cell tumor-induced hypoglycemia caused by big-insulin-like growth factor 2 produced by the tumor in the dog. This report provides information on differentiating tumors that cause paraneoplastic hypoglycemia.


Assuntos
Adenocarcinoma/veterinária , Doenças do Cão , Hipoglicemia/veterinária , Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias Mamárias Animais , Adenocarcinoma/metabolismo , Adenocarcinoma/cirurgia , Animais , Cães , Feminino , Hipoglicemia/etiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/veterinária , Neoplasias Mamárias Animais/complicações , Neoplasias Mamárias Animais/metabolismo
4.
J Reprod Immunol ; 161: 104187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199177

RESUMO

Extracellular vesicles (EVs), including exosomes, are carriers of extracellular microRNAs (miRNAs). Exomeres, non-vesicular extracellular nanoparticles (NVEPs), are novel extracellular cargo carriers. However, little is known of the characteristics of placental trophoblast-derived exomeres. In this study, we characterized trophoblast-derived exomeres and investigated the cell-cell communication of placenta-specific miRNAs carried by those exomeres using an in vitro model system (BeWo trophoblasts and Jurkat T cells). BeWo exomeres (∼ 40 nm diameter) had pilling-like nanoparticle structures, which were distinct from cup-shaped exosomes (∼ 90-110 nm diameter). BeWo cells secreted more exomeres than exosomes. Exomeres were positive for AGO2 but negative for exosome markers (CD63, CD9, CD81, FLOT1, and TSG101). The levels of placenta-specific miRNAs in exomeres were significantly higher than in exosomes. In a cell-cell communication analysis using a placenta-specific miRNA, BeWo exomeres delivered significantly more miR-517a-3p to recipient Jurkat cells compared with exosomes. Moreover, exomere-miR-517a-3p significantly reduced the expression of PRKG1 in miR-517a-3p-inhibitor (-) Jurkat cells compared with miR-517a-3p-inhibitor (+) cells, suggesting that miR-517a-3p inhibition reversed the exomere-miR-517a-3p-mediated repression of PRKG1 expression in recipient cells. Therefore, BeWo trophoblast exomeres are enriched with bioactive extracellular placenta-specific miRNAs, which were formerly considered to be carried by exosomes. Our findings provide insight into trophoblast-derived NVEPs.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , Gravidez , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Exossomos/genética , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Trofoblastos/metabolismo
5.
J Reprod Immunol ; 162: 104189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241848

RESUMO

In villous trophoblasts, DROSHA is a key ribonuclease III enzyme that processes pri-microRNAs (pri-miRNAs) into pre-miRNAs at the placenta-specific, chromosome 19 miRNA cluster (C19MC) locus. However, little is known of its other functions. We performed formaldehyde crosslinking, immunoprecipitation, and sequencing (fCLIP-seq) analysis of terminal chorionic villi to identify DROSHA-binding RNAs in villous trophoblasts. In villous trophoblasts, DROSHA predominantly generated placenta-specific C19MC pre-miRNAs, including antiviral C19MC pre-miRNAs. The fCLIP-seq analysis also identified non-miRNA transcripts with hairpin structures potentially capable of binding to DROSHA (e.g., SNORD100 and VTRNA1-1). Moreover, in vivo immunohistochemical analysis revealed DROSHA in the cytoplasm of villous trophoblasts. DROSHA was abundant in the cytoplasm of villous trophoblasts, particularly in the apical region of syncytiotrophoblast, in the full-term placenta. Furthermore, in BeWo trophoblasts infected with Sindbis virus (SINV), DROSHA translocated to the cytoplasm and recognized the genomic RNA of SINV. Therefore, in trophoblasts, DROSHA not only regulates RNA metabolism, including the biogenesis of placenta-specific miRNAs, but also recognizes viral RNAs. After SINV infection, BeWo DROSHA-binding VTRNA1-1 was significantly upregulated, and cellular VTRNA1-1 was significantly downregulated, suggesting that DROSHA soaks up VTRNA1-1 in response to viral infection. These results suggest that the DROSHA-mediated recognition of RNAs defends against viral infection in villous trophoblasts. Our data provide insight into the antiviral functions of DROSHA in villous trophoblasts of the human placenta.


Assuntos
MicroRNAs , Viroses , Humanos , Ribonuclease III/genética , Ribonuclease III/química , Ribonuclease III/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Citoplasma/metabolismo , Trofoblastos/metabolismo , Antivirais
6.
Cancers (Basel) ; 16(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38730709

RESUMO

In patients with high-risk prostate cancer (HRPC) after radical prostatectomy (RP), biochemical recurrence (BCR) increases the risk of distant metastasis. Accordingly, additional prognostic biomarkers are required to identify the subpopulation of patients with HRPC who develop clinical recurrence (CR) after BCR. The objective of this study was to identify biomarkers in formalin-fixed paraffin-embedded (FFPE) RP samples that are prognostic for CR in patients with HRPC who experience BCR after RP (post-RP BCR). First, we performed a preliminary RNA sequencing analysis to comprehensively profile RNA expression in FFPE RP samples obtained from patients with HRPC who developed CR after post-RP BCR and found that many snRNAs were very abundant in preserved FFPE samples. Subsequently, we used quantitative polymerase chain reaction (qPCR) to compare the expression levels of highly abundant snRNAs in FFPE RP samples from patients with HRPC with and without CR after post-RP BCR (21 CR patients and 46 non-CR patients who had more than 5 years of follow-up after BCR). The qPCR analysis revealed that the expression levels of snRNA RNU1-1/1-2 and RNU4-1 were significantly higher in patients with CR than in patients without CR. These snRNAs were significantly correlated with clinical recurrence-free survival (RFS) in patients with HRPC who experienced post-RP BCR. Furthermore, snRNA RNU1-1/1-2 could serve as an independent prognostic factor for clinical RFS in post-RP BCR of HRPC cases where known prognostic factors (e.g., Gleason score) cannot distinguish between CR and non-CR patients. Our findings provide new insights into the involvement of snRNAs in prostate cancer progression.

7.
J Comp Pathol ; 200: 35-45, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36641985

RESUMO

This study aimed to investigate the expression of receptor-type tumour endothelial marker 8 (TEM8RT) in canine mammary gland carcinomas (CMGCs) using immunohistochemistry and to evaluate the association between carcinoma cell TEM8RT expression and tumour histological features, histological grades and the differentiation status of neoplastic epithelial cells. TEM8RT expression was more frequently detected in simple carcinomas (tubular and tubulopapillary) than in solid carcinomas, and it was significantly correlated with histological grade Ⅰ tumours and a low mitotic index. Additionally, TEM8RT+ carcinoma cells were more frequently found in CMGCs showing luminal progenitor-like phenotypes, such as Notch1+, CK19+/CK5+/CD49f+ and CK19+/CK5-/CD49f+. Double-labelling immunofluorescence detection techniques confirmed that most TEM8RT+ carcinoma cells expressed CD49f, Notch1 and CK19. However, TEM8RT immunoreactivity was not found in carcinoma cells expressing GATA3, which upregulates mature luminal cell differentiation. Furthermore, TEM8RT+ carcinoma cells were detected in a few CMGCs showing basal/stem cell-like phenotypes such as CK19-/CK5+/CD49f+ and CK19-/CK5+/CD49f-. These findings indicate that TEM8RT is expressed in luminal progenitor-like carcinoma cells in CMGCs. Since TEM8 enhances self-renewal in human mammary stem/progenitor cells, it also may be involved in maintenance of luminal progenitor-like carcinoma cells, resulting in prevention of their transition to basal/stem cell-like carcinoma cells and development of less malignant CMGCs. Therefore, TEM8RT may be useful for indicating prognostic outcomes and identifying the possible ontogeny of carcinoma cells in mammary gland tumours.


Assuntos
Carcinoma , Doenças do Cão , Glândulas Mamárias Humanas , Neoplasias Mamárias Animais , Animais , Cães , Humanos , Integrina alfa6 , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Carcinoma/veterinária , Carcinoma/patologia , Moléculas de Adesão Celular , Fenótipo , Neoplasias Mamárias Animais/patologia , Doenças do Cão/patologia
8.
Res Vet Sci ; 159: 171-182, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148736

RESUMO

This study aimed to investigate the expression of type VI collagen α3 chain (COL6a3) in neoplastic cells of canine mammary gland carcinomas (CMGCs) using immunohistochemistry (IHC) and to evaluate the association between COL6a3 expression and tumor histological features, histological grades, and the differentiation status of neoplastic epithelial cells. COL6a3 expression in carcinoma cells was significantly associated with histologically low malignancy and low mitotic indices. In addition, COL6a3+ carcinoma cells were more frequently detected in simple carcinomas (tubular and tubulopapillary types) than in solid carcinomas. These findings indicate that reduced expression of COL6a3 in carcinoma cells contributes to the malignant phenotype in CMGCs. We also showed that COL6a3 expression in the carcinoma cells was more frequently detected in CK19+/CD49f + and/or CK19+/CK5+ tumors. In addition, COL6a3+/CK19+/CD49f + and COL6a3+/CK19+/CK5+ tumors consisted of CK19+/CD49f + and CK19+/CD49f- cells, and CK19+/CK5+ and CK19+/CK5- cells, respectively. Most of these tumors more frequently expressed GATA3, but not Notch1. These results indicate that COL6a3 is expressed in CMGCs containing both luminal progenitor-like and mature luminal-like cells and showing differentiation ability into mature luminal cells. It is possible that COL6 may be involved in the differentiation of luminal progenitor-like carcinoma cells into mature luminal-like carcinoma cells in CMGCs, which may suppresses the development of malignant phenotypes in CMGCs.


Assuntos
Carcinoma , Doenças do Cão , Animais , Cães , Colágeno Tipo VI/genética , Integrina alfa6/genética , Carcinoma/patologia , Carcinoma/veterinária , Diferenciação Celular , Fenótipo , Doenças do Cão/metabolismo
9.
Int J Hematol ; 113(3): 348-361, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33398631

RESUMO

Histidine decarboxylase (HDC), a histamine synthase, is expressed in various hematopoietic cells and is induced by hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF). We previously showed that nitrogen-containing bisphosphonate (NBP)-treatment induces extramedullary hematopoiesis via G-CSF stimulation. However, the function of HDC in NBP-induced medullary and extramedullary hematopoiesis remains unclear. Here, we investigated changes in hematopoiesis in wild-type and HDC-deficient (HDC-KO) mice. NBP treatment did not induce anemia in wild-type or HDC-KO mice, but did produce a gradual increase in serum G-CSF levels in wild-type mice. NBP treatment also enhanced Hdc mRNA expression and erythropoiesis in the spleen and reduced erythropoiesis in bone marrow and the number of vascular adhesion molecule 1 (VCAM-1)-positive macrophages in wild-type mice, as well as increased the levels of hematopoietic progenitor cells and proliferating cells in the spleen and enhanced expression of bone morphogenetic protein 4 (Bmp4), CXC chemokine ligand 12 (Cxcl12), and hypoxia inducible factor 1 (Hif1) in the spleen. However, such changes were not observed in HDC-KO mice. These results suggest that histamine may affect hematopoietic microenvironments of the bone marrow and spleen by changing hematopoiesis-related factors in NBP-induced extramedullary hematopoiesis.


Assuntos
Alendronato/antagonistas & inibidores , Medula Óssea/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Hematopoese Extramedular/efeitos dos fármacos , Histidina Descarboxilase/deficiência , Baço/efeitos dos fármacos , Alendronato/farmacologia , Alendronato/toxicidade , Anemia/induzido quimicamente , Animais , Medula Óssea/metabolismo , Proteína Morfogenética Óssea 4/biossíntese , Proteína Morfogenética Óssea 4/genética , Quimiocina CXCL12/biossíntese , Quimiocina CXCL12/genética , Indução Enzimática/efeitos dos fármacos , Células Eritroides/patologia , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/sangue , Histamina/biossíntese , Histidina Descarboxilase/biossíntese , Histidina Descarboxilase/genética , Histidina Descarboxilase/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Baço/metabolismo
10.
J Vet Med Sci ; 82(6): 745-753, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32321901

RESUMO

Vascular endothelial growth factor-A (VEGF-A) is a principal regulator of hematopoiesis as well as angiogenesis. However, the functions of VEGF-A and its receptors (VEGFRs) in the differentiation of mast cells (MCs) in the skin remain unclear. The aim of this study was to determine the expression patterns of two VEGFRs (Flk1 and Flt1) in the skin MCs during development and maturation in rats. From the 17th days of embryonic development (E17) to 1 day after birth (Day 1), most of skin MCs were immature cells containing predominant alcian blue (AB)+ rather than safranin O (SO)+ granules (AB>SO MCs). AB>SO MC proportions gradually decreased, while mature ABSO MCs had significantly decreased, and AB

Assuntos
Mastócitos/metabolismo , Pele/crescimento & desenvolvimento , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Desenvolvimento Embrionário , Feminino , Masculino , Ratos Wistar , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA