Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Biol Rep ; 51(1): 775, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904729

RESUMO

Acute leukemias (ALs) are the most common cancers in pediatric population. There are two types of ALs: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Some studies suggest that the Renin Angiotensin System (RAS) has a role in ALs. RAS signaling modulates, directly and indirectly, cellular activity in different cancers, affecting tumor cells and angiogenesis. Our review aimed to summarize the role of RAS in ALs and to explore future perspectives for the treatment of these hematological malignancies by modulating RAS molecules. The database including Pubmed, Scopus, Cochrane Library, and Scielo were searched to find articles about RAS molecules in ALL and in pediatric patients. The search terms were "RAS", "Acute Leukemia", "ALL", "Angiotensin-(1-7)", "Pediatric", "Cancer", "Angiotensin II", "AML". In the bone marrow, RAS has been found to play a key role in blood cell formation, affecting several processes including apoptosis, cell proliferation, mobilization, intracellular signaling, angiogenesis, fibrosis, and inflammation. Local tissue RAS modulates tumor growth and metastasis through autocrine and paracrine actions. RAS mainly acts via two molecules, Angiotensin II (Ang II) and Angiotensin (1-7) [Ang-(1-7)]. While Ang II promotes tumor cell growth and stimulates angiogenesis, Ang-(1-7) inhibits the proliferation of neoplastic cells and the angiogenesis, suggesting a potential therapeutic role of this molecule in ALL. The interaction between ALs and RAS reveals a complex network of molecules that can affect the hematopoiesis and the development of hematological cancers. Understanding these interactions could pave the way for innovative therapeutic approaches targeting RAS components.


Assuntos
Angiotensina II , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Angiotensina II/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Transdução de Sinais , Angiotensina I/metabolismo , Neovascularização Patológica/metabolismo , Animais , Fragmentos de Peptídeos/metabolismo
2.
Biochemistry ; 57(49): 6780-6786, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30452231

RESUMO

The folate antagonist methotrexate is a cytotoxic drug used in the treatment of several cancer types. The entry of methotrexate into the cell is mediated by two main transport systems: the reduced folate carrier and membrane-associated folate receptors. These transporters differ considerably in their mechanism of (anti)folate uptake, substrate specificity, and tissue specificity. Although the mechanism of action of the reduced folate carrier is fairly well-established, that of the folate receptor has remained unknown. The development of specific folate receptor-targeted antifolates would be accelerated if additional mechanistic data were to become available. In this work, we used two fluorescently labeled conjugates of methotrexate, differently linked at the terminal groups, to clarify the uptake mechanism by folate receptor-α. The results demonstrate the importance of methotrexate amino groups in the interaction with folate receptor-α.


Assuntos
Receptor 1 de Folato/metabolismo , Antagonistas do Ácido Fólico/metabolismo , Metotrexato/análogos & derivados , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/metabolismo , Transporte Biológico Ativo , Linhagem Celular Tumoral , Endocitose , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Receptor 1 de Folato/química , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/química , Humanos , Metotrexato/química , Metotrexato/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína Carregadora de Folato Reduzido/química , Proteína Carregadora de Folato Reduzido/metabolismo
3.
Mol Pharm ; 15(2): 527-535, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29291347

RESUMO

Novel nanoparticles based on Poloxamer 407 and vegetable oil were produced by high pressure homogenization. Functionalization of those nanoparticles was made by incorporation of folic acid (FA)-Poloxamer 407 conjugate. These nanoparticles showed suitable characteristics for intravenous therapeutic applications similarly to PEGylated albumin-based nanoparticles, previously described by our research group. Here, we found that the absence of albumin at the interface of Poloxamer 407-based nanoparticles improves the overall process of in vitro cellular uptake and nanoparticle disruption inside cancer cells (folate receptor, FR, positive cells). The results presented here suggest that interfacial composition of those nanoparticles is of paramount importance for drug trafficking inside cancer cells.


Assuntos
Albuminas/química , Portadores de Fármacos/química , Desenvolvimento de Medicamentos/métodos , Nanopartículas/química , Antineoplásicos/administração & dosagem , Fibroblastos , Ácido Fólico/química , Células HeLa , Humanos , Neoplasias/tratamento farmacológico , Poloxâmero/química , Polietilenoglicóis/química
4.
Nanomedicine ; 14(1): 123-130, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939491

RESUMO

Liposomes functionalized with monoclonal antibodies or their antigen-binding fragments have attracted much attention as specific drug delivery devices for treatment of various diseases including cancer. The conjugation of antibodies to liposomes is usually achieved by covalent coupling using cross-linkers in a reaction that might adversely affect the characteristics of the final product. Here we present an alternative strategy for liposome functionalization: we created a recombinant Fab antibody fragment genetically fused on its C-terminus to the hydrophobic peptide derived from pulmonary surfactant protein D, which became inserted into the liposomal bilayer during liposomal preparation and anchored the Fab onto the liposome surface. The Fab-conjugated liposomes specifically recognized antigen-positive cells and efficiently delivered their cargo, the Alexa Fluor 647 dye, into target cells in vitro and in vivo. In conclusion, our approach offers the potential for straightforward development of nanomedicines functionalized with an antibody of choice without the need of harmful cross-linkers.


Assuntos
Anticorpos Monoclonais/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Lipossomos/química , Linfoma/imunologia , Fragmentos de Peptídeos/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Antígeno CD48/metabolismo , Antígenos CD59/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Células Jurkat , Linfoma/metabolismo , Linfoma/patologia , Camundongos , Fragmentos de Peptídeos/metabolismo , Proteína D Associada a Surfactante Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Células Tumorais Cultivadas
5.
Biochim Biophys Acta ; 1858(2): 163-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26589183

RESUMO

Efficient liposome disruption inside the cells is a key for success with any type of drug delivery system. The efficacy of drug delivery is currently evaluated by direct visualization of labeled liposomes internalized by cells, not addressing objectively the release and distribution of the drug. Here, we propose a novel method to easily assess liposome disruption and drug release into the cytoplasm. We propose the encapsulation of the cationic dye Hoechst 34580 to detect an increase in blue fluorescence due to its specific binding to negatively charged DNA. For that, the dye needs to be released inside the cell and translocated to the nucleus. The present approach correlates the intensity of detected fluorescent dye with liposome disruption and consequently assesses drug delivery within the cells.


Assuntos
Benzimidazóis , Citoplasma/metabolismo , DNA/metabolismo , Benzimidazóis/química , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Células CACO-2 , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia
6.
Nanomedicine ; 12(4): 1113-1126, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26733257

RESUMO

Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. Although the cause of RA remains unknown, the complex interaction between immune mediators (cytokines and effector cells) is responsible for the joint damage that begins at the synovial membrane. Activated macrophages are critical in the pathogenesis of RA and showed specifically express a receptor for the vitamin folic acid (FA), folate receptor ß (FRß). This particular receptor allows internalization of FA-coupled cargo. In this review we will address the potential of nanoparticles as an effective drug delivery system for therapies that will directly target activated macrophages. Special attention will be given to stealth degree of the nanoparticles as a strategy to avoid clearance by macrophages of the mononuclear phagocytic system (MPS). This review summarizes the application of FA-target nanoparticles as drug delivery systems for RA and proposes prospective future directions. FROM THE CLINICAL EDITOR: Rheumatoid arthritis is a debilitating autoimmune disease of the joints which affects many people worldwide. Up till now, there is a lack of optimal therapy against this disease. In this review article, the authors outlined in depth the current mechanism of disease for rheumatoid arthritis and described the latest research in using folic acid-targeted nanoparticles to target synovial macrophages in the fight against rheumatoid arthritis.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ácido Fólico/metabolismo , Nanopartículas/uso terapêutico , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Receptor 2 de Folato/biossíntese , Receptor 2 de Folato/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia
7.
Biomacromolecules ; 16(9): 2904-10, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26241560

RESUMO

Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol. Here, we report an innovative strategy for targeted liposome delivery that uses a hydrophobic fragment of surfactant protein D linked to folate. Our proposed spacer is a small 4 amino acid residue linker. The peptide conjugate inserts deeply into the lipid bilayer without affecting liposomal integrity, with high stability and specificity. To compare the drug delivery potential of both liposomal targeting systems, we encapsulated the nuclear dye Hoechst 34580. The eventual increase in blue fluorescence would only be detectable upon liposome disruption, leading to specific binding of this dye to DNA. Our delivery system was proven to be more efficient (2-fold) in Caco-2 cells than classic systems where the folate moiety is linked to liposomes by polyethylene glycol.


Assuntos
Colesterol , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico , Bicamadas Lipídicas , Peptídeos , Fosfolipídeos , Células CACO-2 , Colesterol/química , Colesterol/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/farmacologia , Lipossomos , Peptídeos/química , Peptídeos/farmacologia , Fosfolipídeos/química , Fosfolipídeos/farmacologia
8.
Nanomedicine ; 11(5): 1077-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25791804

RESUMO

Folic Acid (FA)-tagged protein nanoemulsions were found to be preferentially internalized on B-cell lymphoma cell line (A20 cell line), which, for the first time, is reported to express folate receptor (FR)-alpha. Carbon monoxide releasing molecule-2 (CORM-2) was incorporated in the oil phase of the initial formulation. FA-functionalized nanoemulsions loaded with CORM-2 exhibited a considerable antitumor effect and an increased survival of BALB/c mice bearing subcutaneous A20 lymphoma tumors. The developed nanoemulsions also demonstrated to be well tolerated by these immunocompetent mice. Thus, the results obtained in this study demonstrate that FA-tagged protein nanoemulsions can be successfully used in cancer therapy, with the important ability to delivery drugs intracellularly. FROM THE CLINICAL EDITOR: In this research, the authors developed folic acid tagged nanoemulsions containing a carbon monoxide releasing protein molecule for targeted cancer cell treatment. In-vitro and in-vivo experiments showed efficacy against B-cell lymphoma cells. The same nanocarrier platform could be applied to other tumor cells expressing folate receptors on the cell surface.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Linfoma/tratamento farmacológico , Compostos Organometálicos/administração & dosagem , Soroalbumina Bovina/química , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/metabolismo , Feminino , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/metabolismo , Humanos , Linfoma/metabolismo , Linfoma/patologia , Camundongos Endogâmicos BALB C , Compostos Organometálicos/uso terapêutico , Soroalbumina Bovina/metabolismo
9.
Biomedicines ; 10(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35203442

RESUMO

Methotrexate (MTX) is first-line therapy for the treatment of rheumatoid arthritis (RA), however, its use may be limited by side effects notably post-injection malaise. When patients are intolerant or become unresponsive, second-line or antibody therapy may be indicated. A folate-targeted liposomal formulation of MTX (FL-MTX) is tropic to arthritic paws and prevents the onset of collagen-induced arthritis (CIA) in the mouse. We optimized the drug-to-lipid molar ratio to 0.15 and demonstrated the therapeutic efficacy of this form at 2 mg/kg MTX intraperitoneal (i.p.) twice a week. These improved liposomes were present in inflamed joints in proportion to the degree of swelling of the paw and bone remodeling activity. FL-MTX had lower hepatic and renal elimination of MTX than the free substance. FL-MTX provided equivalent results when given i.p. or subcutaneous (s.c.) and FL-MTX 2 mg/kg (drug/lipid 0.15), twice weekly, was similar to or more effective than 35 mg/kg MTX (same route and schedule) in reducing the incidence and swelling in the murine CIA model. These results suggest that FL-MTX is a more potent nanotherapeutic formulation than free MTX treatment. Its potential benefits for patients may include reduced frequency of treatment and lower overall doses for a given response.

10.
Int J Pharm ; 601: 120571, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33812967

RESUMO

Liposomes are spherical vesicles consisting of one or more concentric phospholipid bilayers enclosing an aqueous core. Being both nontoxic and biodegradable, liposomes represent a powerful delivery system for several drugs. They have improved the therapeutic efficacy of drugs through stabilizing compounds, overcoming obstacles to cellular and tissue uptake and increasing drug biodistribution to target sites in vivo, while minimizing systemic toxicity. This review offers an overview of liposomes, thought the exploration of their key fundamentals. Initially, the main design aspects to obtain a successful liposomal formulation were addressed, following the techniques for liposome production and drug loading. Before application, liposomes required an extensive characterization to assurance in vitro and in vivo performance. Thus, several properties to characterize liposomes were explored, such as size, polydispersity index, zeta potential, shape, lamellarity, phase behavior, encapsulation efficiency, and in vitro drug release. Topics related with liposomal functionalization and effective targeting strategies were also addressed, as well as stability and some limitations of liposomes. Finally, this review intends to explore the current market liposomes used as a drug delivery system in different therapeutic applications.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Liberação Controlada de Fármacos , Fosfolipídeos , Distribuição Tecidual
11.
Int J Pharm ; 602: 120653, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915189

RESUMO

The follicular route is an important drug penetration pathway in any topical application, either concerning dermatological and cosmetic skin treatments or any transdermal administration regimen. Efficient transport into follicles will depend on drug inherent properties but also on the chosen vehicle. The main study goal was to compare several systems for the delivery to the hair bulb of two fluorescent molecules of different water affinities: the hydrophobic Nile Red and the quite similar but hydrophilic Nile Blue. Three common nanoparticle types were compared in terms of encapsulation efficiency and stability: liposomes, ethosomes and polymeric nanoparticles. A liquid serum-like formulation was also developed, adjusting the final ethanol amount to the type of dye to be solubilized. Then, this formulation and the nanoparticle systems that successfully passed characterization and stability stages were further studied on their ability to reach the bulb. The serum formulation was able to deliver, both drug models, to deeper follicular regions than nanoparticles. Attending to the envisioned zone target of the follicle, the simplest approach proved to be the best choice from all the systems tested in this work. Nonetheless, nanocarriers and the inherent complexity of their manufacturing processes may be justified under very specific requirements.


Assuntos
Portadores de Fármacos , Nanopartículas , Administração Cutânea , Sistemas de Liberação de Medicamentos , Folículo Piloso , Interações Hidrofóbicas e Hidrofílicas , Pele
12.
Biomedicines ; 8(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353028

RESUMO

Methotrexate (MTX) is a common drug used to treat rheumatoid arthritis. Due to the excessive side effects, encapsulation of MTX in liposomes is considered an effective delivery system, reducing drug toxicity, while maintaining its efficacy. The ethanol injection method is an interesting technique for liposome production, due to its simplicity, fast implementation, and reproducibility. However, this method occasionally requires the extrusion process, to obtain suitable size distribution, and achieve a low level of MTX encapsulation. Here, we develop a novel pre-concentration method, based on the principles of the ethanol injection, using an initial aqueous volume of 20% and 1:1 ratio of organic:aqueous phase (v/v). The liposomes obtained present small values of size and polydispersity index, without the extrusion process, and a higher MTX encapsulation (efficiency higher than 30%), suitable characteristics for in vivo application. The great potential of MTX to interact at the surface of the lipid bilayer was shown by nuclear magnetic resonance (NMR) studies, revealing mutual interactions between the drug and the main phospholipid via hydrogen bonding. In vivo experiments reveal that liposomes encapsulating MTX significantly increase the biological benefit in arthritic mice. This approach shows a significant advance in MTX therapeutic applications.

13.
Antonie Van Leeuwenhoek ; 96(4): 395-404, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19484503

RESUMO

The highly polymorphic microsatellite CAI described for Candida albicans genotyping was found to be located within the RLM1 gene which codes for a transcription factor from the MADS box family that, in Saccharomyces cerevisiae, is known to regulate the expression of genes involved in the cell wall integrity pathway. The aim of this work was to study CAI genetic variability in a wide group of C. albicans isolates and determine the response of genetic variants to cell wall damaging stress agents. One hundred twenty-three C. albicans isolates were genotyped with CAI microsatellite (CAA/G)(n), and 35 alleles were found with repeat units varying from 11 to 49. Alleles with less than 29 repetitions were the most frequent, while the longer ones were underrepresented and had a more complex internal structure. Combinations of RLM1 alleles generated 66 different genotypes. Significant differences (P < 0.05) in the susceptibility patterns to menadione, hydrogen peroxide, SDS, acetic acid, and CFW, stress agents affecting cell integrity, were found between strains harbouring alleles ranging from 17 to 28 repetitions and strains with longer alleles, suggesting that an increased number of repetitive units in the C. albicans RLM1 gene could be related to stress response.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica , Proteínas Fúngicas/fisiologia , Glutamina/genética , Sequência de Bases , Candida albicans/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Frequência do Gene , Variação Genética , Genótipo , Humanos , Repetições de Microssatélites , Dados de Sequência Molecular
14.
Colloids Surf B Biointerfaces ; 179: 414-420, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30999120

RESUMO

Liposomes are one of the most important and extensively studied drug delivery system due to their ability to encapsulate different kinds of drugs. Exploiting the advantages of 1H Nuclear Magnetic Resonance (NMR) spectrometry, we established a rapid and easy method for quantification of drugs encapsulated in liposomes. An internal standard, pyridine, was used for quantitative determination of drug concentration. Two different drugs were involved in this work, one hydrophilic, methotrexate disodium salt, and another hydrophobic, tamoxifen. The specificity and selectivity of the suggested method were evaluated by the absence of overlapping of at least one signal of each drug with pyridine in the NMR spectrum. The accuracy and precision of the method were assessed by adding a known amount of each drug to unloaded liposomes. Results obtained by quantitative NMR (qNMR) were validated and confirmed by comparing with two other traditional techniques, Ultraviolet-Visible (UV-vis) spectrophotometry and High-Performance Liquid Chromatography (HPLC). It was found that the results were consistent with the ones obtained from our proposed qNMR method. Considering all the experiments conducted in this study, we deliberate that qNMR can be a suitable tool for the determination of drugs encapsulated in liposomes.


Assuntos
Composição de Medicamentos , Preparações Farmacêuticas/análise , Espectroscopia de Prótons por Ressonância Magnética , Cromatografia Líquida de Alta Pressão , Óxido de Deutério/química , Difusão Dinâmica da Luz , Lipossomos , Metotrexato/análise , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta , Tamoxifeno/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-31921827

RESUMO

The production of freeze-dried liposomes encapsulating drugs is considered a key challenge since the drugs are prone to leakage. The aim of this work was to study the effect of different saccharides on preserving the stability and drug retention capacity of a previously developed liposomal formulation, when subjected to a freeze-drying process. The protective role of trehalose, lactose, glucose, mannitol and sucrose, known for their cryo/lyoprotective effect, was tested by addition of different concentrations to liposomes. Sucrose, in a concentration dependent manner (8:1 sugar:lipids mass ratio) proved to be a suitable cryo/lyoprotectant of these liposomes. Effectively, this saccharide prevents the fusion or/and aggregation of the liposomal formulation, protecting the integrity of the freeze-dried empty liposomes. The liposomal formulation containing sucrose was studied in terms of morphology, concentration, and anticancer drugs retention ability. The study involved two drugs encapsulated in the aqueous core, methotrexate (MTX) and doxorubicin (DOX), and one drug located in the lipid bilayer, tamoxifen (TAM). After the freeze-drying process, liposomes with sucrose encapsulating drugs revealed high physical stability, maintaining their narrow and monodisperse character, however high leakage of the drugs encapsulated in the aqueous core was observed. Otherwise, no significant drug leakage was detected on liposomes containing the TAM, which maintained its biological activity after the freeze-drying process. These findings reveal that sucrose is a good candidate for the cryo/lyoprotection of liposomes with drugs located in the lipid bilayer.

16.
Colloids Surf B Biointerfaces ; 161: 645-653, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29169119

RESUMO

Cell-penetrating peptides (CPPs) have been applied as novel transport systems with the ability to facilitate the delivery of peptides, proteins, and oligonucleotides into cells. Herein, we designed different fusion proteins composed by pig odorant binding protein (OBP-I) and three CPPs, namely Tat, pVEC and Pep-1. A new methodology using liposomes as reservoirs and OBP:CPPs as carriers was developed as an advanced system to capture odorant molecules. 1-aminoanthracene (1-AMA) was used as a model molecule to evaluate the transduction ability of OBP:CPPs into the reservoirs. The transduction efficiency was dependent on the initial capacity of OBP:CPPs to bind 1-AMA and on the penetration of liposomes promoted by the CPPs. An encapsulation efficiency of 42% was obtained with OBP:Tat fusion protein. The presence of Tat peptide increased the 1-AMA transduction of 1.3 and 2.5 fold compared with Pep-1 and pVEC, respectively. This work expands the application of OBPs and CPPs on the design of promising capture and delivery systems for textile and cosmetic applications.


Assuntos
Antracenos/química , Peptídeos Penetradores de Células/química , Lipossomos/química , Receptores Odorantes/química , Sequência de Aminoácidos , Animais , Antracenos/administração & dosagem , Antracenos/metabolismo , Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Receptores Odorantes/metabolismo , Suínos
17.
Colloids Surf B Biointerfaces ; 155: 459-465, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472749

RESUMO

Cationic liposomes are efficient vectors for systemic delivery of therapeutic small interfering RNA (siRNA), taking advantage of RNA interference (RNAi), a naturally occurring gene-silencing mechanism in mammalian cells. However, toxicity at high concentrations, short circulating half-lives and lack of specificity restrict their successful application in a wider scale. The purpose of this study was to evaluate the efficiency of neutral liposomes containing polyethylene glycol (PEG) to encapsulate siRNA in their aqueous core. This formulation will reduce drastically the toxicity associated to cationic liposomes by bringing surface charge to almost zero, increasing stealth degree and therefore circulation time. In this study, we evaluate the efficiency of folate-targeted liposomes for specific delivery of siRNA to activated macrophages, key effector cells in rheumatoid arthritis (RA) pathology which specifically express folate receptor ß (FRß). Myeloid cell leukaemia-1 (Mcl-1) is a protein essential for synovial macrophage survival, since Mcl-1 suppression results in the induction of apoptosis. The effect of MCL1 siRNA incorporated in liposomal formulation was assessed in primary human macrophages and successful inhibition of Mcl-1 expression was achieved. Here we show that the neutral liposomal derived from DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) formulation developed is efficient to encapsulate MCL1 siRNA and silencing gene expression in activated human macrophages.


Assuntos
Ácido Fólico/química , Lipossomos/química , Macrófagos/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , RNA Interferente Pequeno/genética , Animais , Linhagem Celular , Células Cultivadas , Portadores de Fármacos/química , Receptor 2 de Folato/genética , Receptor 2 de Folato/metabolismo , Ácido Fólico/metabolismo , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Interferência de RNA , RNA Interferente Pequeno/química , Transfecção/métodos
18.
Curr Med Chem ; 23(21): 2190-203, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27149868

RESUMO

Rheumatoid arthritis is a common chronic inflammatory and destructive arthropathy that consumes considerable personal, social and economic costs. It consists of a syndrome of pain, stiffness and symmetrical inflammation of the synovial membrane (synovitis) of freely moveable joints such as the knee (diarthrodial joints). Although the etiology of rheumatoid arthritis is unclear, the disease is characterized by inflammation of the synovial lining of diarthrodial joints, high synovial proliferation and an influx of inflammatory cells, macrophages and lymphocytes through angiogenic blood vessels. Diseasemodifying antirheumatic drugs slow disease progression and can induce disease remission in some patients. Methotrexate is the first line therapy, but if patients become intolerant to this drug, biologic agents should be used. The development of biological substances for the treatment of rheumatic conditions has been accompanied by ongoing health economic discussions regarding the implementation of these highly effective, but accordingly, highly priced drugs are the standard treatment guidelines of rheumatic diseases. In this way, more efficient strategies have to be identified. Despite numerous reviews in rheumatoid arthritis in the last years, this area is in constant development and updates are an urgent need to incorporate new advances in rheumatoid arthritis research. This review highlights the immunopathogenesis rationale for the current therapeutic strategies in rheumatoid arthritis.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Modelos Animais de Doenças , Humanos , Metotrexato/uso terapêutico , Manejo da Dor , Membrana Sinovial/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
19.
Colloids Surf B Biointerfaces ; 136: 514-26, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26454541

RESUMO

Liposomes have gained extensive attention as carriers for a wide range of drugs due to being both nontoxic and biodegradable as they are composed of substances naturally occurring in biological membranes. Active targeting for cells has explored specific modification of the liposome surface by functionalizing it with specific targeting ligands in order to increase accumulation and intracellular uptake into target cells. None of the Food and Drug Administration-licensed liposomes or lipid nanoparticles are coated with ligands or target moieties to delivery for homing drugs to target tissues, cells or subcellular organelles. Targeted therapies (with or without controlled drug release) are an emerging and relevant research area. Despite of the numerous liposomes reviews published in the last decades, this area is in constant development. Updates urgently needed to integrate new advances in targeted liposomes research. This review highlights the evolution of liposomes from passive to active targeting and challenges in the development of targeted liposomes for specific therapies.


Assuntos
Química Farmacêutica , Lipossomos , Sistemas de Liberação de Medicamentos
20.
Colloids Surf B Biointerfaces ; 135: 90-98, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26241920

RESUMO

Bovine serum albumin (BSA) nanoemulsions were produced by high pressure homogenization with a tri-block copolymer (Poloxamer 407), which presents a central hydrophobic chain of polyoxypropylene (PPO) and two identical lateral hydrophilic chains of polyethylene glycol (PEG). We observed a linear correlation between tri-block copolymer concentration and size - the use of 5mg/mL of Poloxamer 407 yields nanoemulsions smaller than 100nm. Molecular dynamics and fluorescent tagging of the tri-block copolymer highlight their mechanistic role on the size of emulsions. This novel method enables the fabrication of highly stable albumin emulsions in the nano-size range, highly desirable for controlled drug delivery. Folic Acid (FA)-tagged protein nanoemulsions were shown to promote specific folate receptor (FR)-mediated targeting in FR positive cells. The novel strategy presented here enables the construction of size controlled, functionalized protein-based nanoemulsions with excellent characteristics for active targeting in cancer therapy.


Assuntos
Receptores de Folato com Âncoras de GPI/efeitos dos fármacos , Nanopartículas , Proteínas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular , Sistemas de Liberação de Medicamentos , Emulsões , Ácido Fólico/metabolismo , Humanos , Tamanho da Partícula , Poloxâmero , Polietilenoglicóis , Polímeros , Propilenoglicóis , Proteínas/farmacologia , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA