Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(22): 227203, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36493427

RESUMO

There is a number of contradictory findings with regard to whether the theory describing easy-plane quantum antiferromagnets undergoes a second-order phase transition. The traditional Landau-Ginzburg-Wilson approach suggests a first-order phase transition, as there are two different competing order parameters. On the other hand, it is known that the theory has the property of self-duality which has been connected to the existence of a deconfined quantum critical point (DQCP). The latter regime suggests that order parameters are not the elementary building blocks of the theory, but rather consist of fractionalized particles that are confined in both phases of the transition and only appear-deconfine-at the critical point. Nevertheless, many numerical Monte Carlo simulations disagree with the claim of a DQCP in the system, indicating instead a first-order phase transition. Here we establish from exact lattice duality transformations and renormalization group analysis that the easy-plane CP^{1} antiferromagnet does feature a DQCP. We uncover the criticality starting from a regime analogous to the zero temperature limit of a certain classical statistical mechanics system which we therefore dub frozen. At criticality our bosonic theory is dual to a fermionic one with two massless Dirac fermions, which thus undergoes a second-order phase transition as well.


Assuntos
Física , Método de Monte Carlo , Transição de Fase , Temperatura
2.
Nature ; 533(7604): 513-6, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225124

RESUMO

Topological insulators are insulating materials that display conducting surface states protected by time-reversal symmetry, wherein electron spins are locked to their momentum. This unique property opens up new opportunities for creating next-generation electronic, spintronic and quantum computation devices. Introducing ferromagnetic order into a topological insulator system without compromising its distinctive quantum coherent features could lead to the realization of several predicted physical phenomena. In particular, achieving robust long-range magnetic order at the surface of the topological insulator at specific locations without introducing spin-scattering centres could open up new possibilities for devices. Here we use spin-polarized neutron reflectivity experiments to demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (EuS) to a topological insulator (Bi2Se3) in a bilayer system. This interfacial ferromagnetism persists up to room temperature, even though the ferromagnetic insulator is known to order ferromagnetically only at low temperatures (<17 K). The magnetism induced at the interface resulting from the large spin-orbit interaction and the spin-momentum locking of the topological insulator surface greatly enhances the magnetic ordering (Curie) temperature of this bilayer system. The ferromagnetism extends ~2 nm into the Bi2Se3 from the interface. Owing to the short-range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a topological insulator, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered topological insulator could allow efficient manipulation of the magnetization dynamics by an electric field, providing an energy-efficient topological control mechanism for future spin-based technologies.

3.
Phys Rev Lett ; 127(4): 045701, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355966

RESUMO

Two-dimensional quantum systems with competing orders can feature a deconfined quantum critical point, yielding a continuous phase transition that is incompatible with the Landau-Ginzburg-Wilson scenario, predicting instead a first-order phase transition. This is caused by the LGW order parameter breaking up into new elementary excitations at the critical point. Canonical candidates for deconfined quantum criticality are quantum antiferromagnets with competing magnetic orders, captured by the easy-plane CP^{1} model. A delicate issue however is that numerics indicates the easy-plane CP^{1} antiferromagnet to exhibit a first-order transition. Here we show that an additional topological Chern-Simons term in the action changes this picture completely in several ways. We find that the topological easy-plane antiferromagnet undergoes a second-order transition with quantized critical exponents. Further, a particle-vortex duality naturally maps the partition function of the Chern-Simons easy-plane antiferromagnet into one of massless Dirac fermions.

4.
Phys Rev Lett ; 121(22): 227001, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547607

RESUMO

Recently, two fundamental topological properties of a magnetic vortex at the interface of a superconductor (SC) and a strong topological insulator (TI) have been established: The vortex carries both a Majorana zero mode relevant for topological quantum computation and, for a time-reversal invariant TI, a charge of e/4. This fractional charge is caused by the axion term in the electromagnetic Lagrangian of the TI. Here we determine the angular momentum J of the vortices, which in turn determines their mutual statistics. Solving the axion-London electrodynamic equations including screening in both a SC and a TI, we find that the elementary quantum of angular momentum of the vortex is -n^{2}ℏ/8, where n is the flux quantum of the vortex line. Exchanging two elementary fluxes thus changes the phase of the wave function by -π/4.

5.
Phys Rev Lett ; 117(16): 167002, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792358

RESUMO

We reveal the existence of a new type of topological Josephson effect involving type II superconductors and three-dimensional topological insulators as tunnel junctions. We predict that vortex lines induce a variant of the Witten effect that is the consequence of the axion electromagnetic response of the topological insulator: at the interface of the junction each flux quantum attains a fractional electrical charge of e/4. As a consequence, if an external magnetic field is applied perpendicular to the junction, the Witten effect induces an ac Josephson effect in the absence of any external voltage. We derive a number of further experimental consequences and propose potential setups where these quantized, flux induced Witten effects may be observed.

6.
Phys Rev Lett ; 109(23): 237203, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368256

RESUMO

We consider a theory for a two-dimensional interacting conduction electron system with strong spin-orbit coupling on the interface between a topological insulator and the magnetic (ferromagnetic or antiferromagnetic) layer. For the ferromagnetic case we derive the Landau-Lifshitz equation, which features a contribution proportional to a fluctuation-induced electric field obtained by computing the topological (Chern-Simons) contribution from the vacuum polarization. We also show that fermionic quantum fluctuations reduce the critical temperature T[over ˜](c) at the interface relative to the critical temperature T(c) of the bulk, so that in the interval T[over ˜](c)≤T

7.
J Phys Condens Matter ; 24(32): 325701, 1-10, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22784937

RESUMO

We investigate the Josephson effect for a setup with two lattice quantum wires featuring Majorana zero energy boundary modes at the tunnel junction. In the weak-coupling regime, the exact solution reproduces the perturbative result for the energy containing a contribution ∼ ± cos(ϕ/2) relative to the tunneling of paired Majorana fermions. As the tunnel amplitude g grows relative to the hopping amplitude w, the gap between the energy levels gradually diminishes until it closes completely at the critical value gc [Formula: see text]. At this point the Josephson energies have the principal values [Formula: see text], where m =- 1,0,1 and σ =± 1, a result not following from perturbation theory. It represents a transparent regime where three Bogoliubov states merge, leading to additional degeneracies of the topologically nontrivial ground state with an odd number of Majorana fermions at the end of each wire. We also obtain the exact tunnel currents for a fixed parity of the eigenstates. The Josephson current shows the characteristic 4π periodicity expected for a topological Josephson effect. We discuss the additional features of the current associated with a closure of the energy gap between the energy levels.

8.
Phys Rev Lett ; 95(17): 176406, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16383846

RESUMO

Compact quantum electrodynamics in 2 + 1 dimensions often arises as an effective theory for a Mott insulator, with the Dirac fermions representing the low-energy spinons. An important and controversial issue in this context is whether a deconfinement transition takes place. We perform a renormalization group analysis to show that deconfinement occurs when N > Nc = 36/pi3 approximately to 1.161, where N is the number of fermion replica. For N < Nc, however, there are two stable fixed points separated by a line containing a unstable nontrivial fixed point: a fixed point corresponding to the scaling limit of the noncompact theory, and another one governing the scaling behavior of the compact theory. The string tension associated with the confining interspinon potential is shown to exhibit a universal jump as N --> Nc-. Our results imply the stability of a spin liquid at the physical value N = 2 for Mott insulators.

9.
Phys Rev Lett ; 88(23): 232001, 2002 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12059354

RESUMO

It is shown that permanent confinement in three-dimensional compact U(1) gauge theory can be destroyed by matter fields in a deconfinement transition. This follows from a nontrivial infrared fixed point caused by matter, and an anomalous scaling dimension of the gauge field. This leads to a logarithmic interaction between the defects of the gauge fields, which form a gas of magnetic monopoles. For logarithmic interactions, the original electric charges are unconfined. The confined phase, which is permanent in the absence of matter fields, is reached at a critical electric charge, where the interaction between magnetic charges is screened by a pair-unbinding in a Kosterlitz-Thouless-like phase transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA