RESUMO
Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7. We show that by promoting transcriptional elongation, the histone deacetylase inhibitor VPA cooperates with a nusinersen-like ASO to promote E7 inclusion. Surprisingly, the ASO promotes the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that inhibits E7 inclusion. By removing the roadblock, VPA counteracts the chromatin effects of the ASO, resulting in higher E7 inclusion without large pleiotropic effects. Combined administration of the nusinersen-like ASO and VPA in SMA mice strongly synergizes SMN expression, growth, survival, and neuromuscular function.
Assuntos
Atrofia Muscular Espinal , Oligonucleotídeos Antissenso , Animais , Cromatina , Éxons , Camundongos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNARESUMO
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report the identification of two additional missense variants in IMPDH2 from affected individuals and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
Assuntos
IMP Desidrogenase , Purinas , Humanos , Regulação Alostérica , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Mutação , Guanosina TrifosfatoRESUMO
Exome sequencing (ES) has emerged as an essential tool in the evaluation of neurodevelopmental disorders (NDD) of unknown etiology. Genome sequencing (GS) offers advantages over ES due to improved detection of structural, copy number, repeat number and non-coding variants. However, GS is less commonly utilized due to higher cost and more intense analysis. Here, we present nine cases of pediatric NDD that were molecularly diagnosed with GS between 2017 and 2022, following non-diagnostic ES. All individuals presented with global developmental delay or regression. Other features present in our cohort included epilepsy, white matter abnormalities, brain malformation and dysmorphic features. Two cases were diagnosed on GS due to newly described gene-disease relationship or variant reclassification (MAPK8IP3, CHD3). Additional features missed on ES that were later detected on GS were: intermediate-size deletions in three cases who underwent ES that were not validated for CNV detection, pathogenic variants within the non-protein coding genes SNORD118 and RNU7-1, pathogenic variant within the promoter region of GJB1, and a coding pathogenic variant within BCAP31 which was not sufficiently covered on ES. GS following non-diagnostic ES led to the identification of pathogenic variants in this cohort of nine cases, four of which would not have been identified by reanalysis alone.
Assuntos
Sequenciamento do Exoma , Transtornos do Neurodesenvolvimento , Fenótipo , Humanos , Criança , Masculino , Feminino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/diagnóstico , Pré-Escolar , Exoma/genética , Lactente , Variações do Número de Cópias de DNA/genética , Sequenciamento Completo do Genoma , Adolescente , Predisposição Genética para Doença , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologiaRESUMO
Subdural hemorrhages (SDHs) in the pediatric population are associated with a high mortality and morbidity and may present in the context of abusive head trauma. Diagnostic investigations for such cases often include evaluation for rare genetic and metabolic disorders that can have associated SDH. Sotos syndrome is an overgrowth syndrome associated with macrocephaly and increased subarachnoid spaces and rarely with neurovascular complications. Here, we report two cases of Sotos syndrome, one with SDH during infancy who underwent repeated evaluation for suspected child abuse prior to the Sotos syndrome diagnosis and the other with enlarged extra-axial cerebrospinal fluid spaces, demonstrating a possible mechanism for SDH development in this setting. These cases suggest that some individuals with Sotos syndrome may be at elevated risk of developing SDH in infancy and that Sotos syndrome should be on the differential diagnosis during a medical genetics evaluation in cases of unexplained SDH, especially in the setting of macrocephaly.
Assuntos
Maus-Tratos Infantis , Traumatismos Craniocerebrais , Megalencefalia , Síndrome de Sotos , Humanos , Criança , Lactente , Síndrome de Sotos/complicações , Síndrome de Sotos/diagnóstico , Síndrome de Sotos/genética , Hematoma Subdural/diagnóstico , Traumatismos Craniocerebrais/complicações , Maus-Tratos Infantis/diagnóstico , Megalencefalia/etiologia , Megalencefalia/complicaçõesRESUMO
CHD7 disorder is a multiple congenital anomaly syndrome with a highly variable phenotypic spectrum, and includes CHARGE syndrome. Internal and external genital phenotypes frequently seen in CHD7 disorder include cryptorchidism and micropenis in males, and vaginal hypoplasia in females, both thought to be secondary to hypogonadotropic hypogonadism. Here, we report 14 deeply phenotyped individuals with known CHD7 variants (9 pathogenic/likely pathogenic and 5 VOUS) and a range of reproductive and endocrine phenotypes. Reproductive organ anomalies were observed in 8 of 14 individuals and were more commonly noted in males (7/7), most of whom presented with micropenis and/or cryptorchidism. Kallmann syndrome was commonly observed among adolescents and adults with CHD7 variants. Remarkably, one 46,XY individual presented with ambiguous genitalia, cryptorchidism with Müllerian structures including uterus, vagina and fallopian tubes, and one 46,XX female patient presented with absent vagina, uterus and ovaries. These cases expand the genital and reproductive phenotype of CHD7 disorder to include two individuals with genital/gonadal atypia (ambiguous genitalia), and one with Müllerian aplasia.
Assuntos
Síndrome CHARGE , Criptorquidismo , Transtornos do Desenvolvimento Sexual , Humanos , Masculino , Feminino , Fenótipo , Síndrome CHARGE/genética , Transtornos do Desenvolvimento Sexual/genética , Genitália , DNA Helicases/genética , Proteínas de Ligação a DNA/genéticaRESUMO
Rubinstein-Taybi syndrome (RSTS) is an autosomal dominant genetic syndrome characterized by distinct facial features, broad thumbs, growth restriction, microcephaly, intellectual disability, and developmental delay. Pathogenic variants in both CREBBP and EP300 have been associated with RSTS. Here we present a case of a female with hyperinsulinism and features consistent with RSTS, found to have a pathogenic variant in EP300. While there have been a few rare case reports of hyperinsulinism in RSTS, we suggest that hyperinsulinism might be a more prominent feature in EP300 variant RSTS than previously recognized.
Assuntos
Proteína p300 Associada a E1A/genética , Predisposição Genética para Doença , Hiperinsulinismo/genética , Síndrome de Rubinstein-Taybi/genética , Feminino , Variação Genética/genética , Genótipo , Humanos , Hiperinsulinismo/patologia , Lactente , Recém-Nascido , Mutação/genética , Fenótipo , Síndrome de Rubinstein-Taybi/patologia , Deleção de Sequência/genéticaRESUMO
Familial dysautonomia (FD) is a rare inherited neurodegenerative disorder caused by a point mutation in the IKBKAP gene that results in defective splicing of its pre-mRNA. The mutation weakens the 5' splice site of exon 20, causing this exon to be skipped, thereby introducing a premature termination codon. Though detailed FD pathogenesis mechanisms are not yet clear, correcting the splicing defect in the relevant tissue(s), thus restoring normal expression levels of the full-length IKAP protein, could be therapeutic. Splice-switching antisense oligonucleotides (ASOs) can be effective targeted therapeutics for neurodegenerative diseases, such as nusinersen (Spinraza), an approved drug for spinal muscular atrophy. Using a two-step screen with ASOs targeting IKBKAP exon 20 or the adjoining intronic regions, we identified a lead ASO that fully restored exon 20 splicing in FD patient fibroblasts. We also characterized the corresponding cis-acting regulatory sequences that control exon 20 splicing. When administered into a transgenic FD mouse model, the lead ASO promoted expression of full-length human IKBKAP mRNA and IKAP protein levels in several tissues tested, including the central nervous system. These findings provide insights into the mechanisms of IKBKAP exon 20 recognition, and pre-clinical proof of concept for an ASO-based targeted therapy for FD.
Assuntos
Proteínas de Transporte/genética , Disautonomia Familiar/genética , Disautonomia Familiar/terapia , Oligonucleotídeos Antissenso/farmacologia , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Disautonomia Familiar/patologia , Elementos Facilitadores Genéticos , Éxons , Fibroblastos , Humanos , Camundongos Transgênicos , Oligonucleotídeos Antissenso/química , Sítios de Splice de RNA , Splicing de RNA , Fatores de Elongação da TranscriçãoRESUMO
Whole exome and genome sequencing, coupled with refined bioinformatic pipelines, have enabled improved diagnostic yields for individuals with Mendelian conditions and have led to the rapid identification of novel syndromes. For many Mendelian neurodevelopmental disorders (NDDs), there is a lack of pre-existing model systems for mechanistic work. Thus, it is critical for translational researchers to have an accessible phenotype- and genotype-informed approach for model system selection. Single-cell RNA sequencing data can be informative in such an approach, as it can indicate which cell types express a gene of interest at the highest levels across time. For Mendelian NDDs, such data for the developing human brain is especially useful. A valuable single-cell RNA sequencing dataset of the second trimester developing human brain was produced by Bhaduri et al in 2021, but access to these data can be limited by computing power and the learning curve of single-cell data analysis. To reduce these barriers for translational research on Mendelian NDDs, we have built the web-based tool, Neurodevelopment in Trimester 2 - VIsualization of Single cell Data Online Tool (NeuroTri2-VISDOT), for exploring this single-cell dataset, and we have employed it in several different settings to demonstrate its utility for the translational research community.
RESUMO
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report identification of two additional affected individuals with missense variants in IMPDH2 and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
RESUMO
Loss of function variants in the NF1 gene cause neurofibromatosis type 1 (NF1), a genetic disorder characterized by complete penetrance, prevalence of 1 in 3,000, characteristic physical exam findings, and a substantially increased risk for malignancy. However, our understanding of the disorder is entirely based on patients ascertained through phenotype-first approaches. Leveraging a genotype-first approach in two large patient cohorts, we demonstrate unexpectedly high prevalence (1 in 450-750) of NF1 pathogenic variants. Half were identified in individuals lacking clinical features of NF1, with many appearing to have post-zygotic mosaicism for the identified variant. Incidentally discovered variants were not associated with classic NF1 features but were associated with an increased incidence of malignancy compared to a control population. Our findings suggest that NF1 pathogenic variants are substantially more common than previously thought, often characterized by somatic mosaicism and reduced penetrance, and are important contributors to cancer risk in the general population.
RESUMO
Low CFTR mRNA expression due to nonsense-mediated mRNA decay (NMD) is a major hurdle in developing a therapy for cystic fibrosis (CF) caused by the W1282X mutation in the CFTR gene. CFTR-W1282X truncated protein retains partial function, so increasing its levels by inhibiting NMD of its mRNA will likely be beneficial. Because NMD regulates the normal expression of many genes, gene-specific stabilization of CFTR-W1282X mRNA expression is more desirable than general NMD inhibition. Synthetic antisense oligonucleotides (ASOs) designed to prevent binding of exon junction complexes (EJC) downstream of premature termination codons (PTCs) attenuate NMD in a gene-specific manner. We describe cocktails of three ASOs that specifically increase the expression of CFTR-W1282X mRNA and CFTR protein upon delivery into human bronchial epithelial cells. This treatment increases the CFTR-mediated chloride current. These results set the stage for clinical development of an allele-specific therapy for CF caused by the W1282X mutation.
Assuntos
Fibrose Cística , Degradação do RNAm Mediada por Códon sem Sentido , Códon sem Sentido/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/farmacologia , RNA Mensageiro/metabolismoRESUMO
The splicing factor SRSF1 promotes nonsense-mediated mRNA decay (NMD), a quality control mechanism that degrades mRNAs with premature termination codons (PTCs). Here we show that transcript-bound SRSF1 increases the binding of NMD factor UPF1 to mRNAs while in, or associated with, the nucleus, bypassing UPF2 recruitment and promoting NMD. SRSF1 promotes NMD when positioned downstream of a PTC, which resembles the mode of action of exon junction complex (EJC) and NMD factors. Moreover, splicing and/or EJC deposition increase the effect of SRSF1 on NMD. Lastly, SRSF1 enhances NMD of PTC-containing endogenous transcripts that result from various events. Our findings reveal an alternative mechanism for UPF1 recruitment, uncovering an additional connection between splicing and NMD. SRSF1's role in the mRNA's journey from splicing to decay has broad implications for gene expression regulation and genetic diseases.
Assuntos
Degradação do RNAm Mediada por Códon sem Sentido/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Processamento Alternativo/genética , Motivos de Aminoácidos , Núcleo Celular/metabolismo , Códon sem Sentido/genética , Éxons/genética , Células HeLa , Humanos , Modelos Genéticos , Fosforilação , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/genética , Fatores de Transcrição/metabolismoAssuntos
Anormalidades Múltiplas , Anormalidades do Olho , Doenças Renais Císticas , Humanos , Cerebelo/diagnóstico por imagem , Anormalidades Múltiplas/genética , Doenças Renais Císticas/genética , Retina/diagnóstico por imagem , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fenótipo , GenótipoRESUMO
Nonsense-mediated mRNA decay (NMD) is a cellular quality-control mechanism that is thought to exacerbate the phenotype of certain pathogenic nonsense mutations by preventing the expression of semi-functional proteins. NMD also limits the efficacy of read-through compound (RTC)-based therapies. Here, we report a gene-specific method of NMD inhibition using antisense oligonucleotides (ASOs) and combine this approach with an RTC to effectively restore the expression of full-length protein from a nonsense-mutant allele.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Terapia Genética/métodos , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Degradação do RNAm Mediada por Códon sem Sentido/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Humanos , Reprodutibilidade dos TestesRESUMO
Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. The related SMN2 gene expresses suboptimal levels of functional SMN protein, due to a splicing defect. Many SMA patients reach adulthood, and there is also adult-onset (type IV) SMA. There is currently no animal model for adult-onset SMA, and the tissue-specific pathogenesis of post-developmental SMN deficiency remains elusive. Here, we use an antisense oligonucleotide (ASO) to exacerbate SMN2 mis-splicing. Intracerebroventricular ASO injection in adult SMN2-transgenic mice phenocopies key aspects of adult-onset SMA, including delayed-onset motor dysfunction and relevant histopathological features. SMN2 mis-splicing increases during late-stage disease, likely accelerating disease progression. Systemic ASO injection in adult mice causes peripheral SMN2 mis-splicing and affects prognosis, eliciting marked liver and heart pathologies, with decreased IGF1 levels. ASO dose-response and time-course studies suggest that only moderate SMN levels are required in the adult central nervous system, and treatment with a splicing-correcting ASO shows a broad therapeutic time window. We describe distinctive pathological features of adult-onset and early-onset SMA.