RESUMO
While the immunogenicity of SARS-CoV-2 vaccines has been well described in adults, pediatric populations have been less studied. In particular, children with type 1 diabetes are generally at elevated risk for more severe disease after infections, but are understudied in terms of COVID-19 and SARS-CoV-2 vaccine responses. We investigated the immunogenicity of COVID-19 mRNA vaccinations in 35 children with type 1 diabetes (T1D) and 23 controls and found that these children develop levels of SARS-CoV-2 neutralizing antibody titers and spike protein-specific T cells comparable to nondiabetic children. However, in comparing the neutralizing antibody responses in children who received 2 doses of mRNA vaccines (24 T1D; 14 controls) with those who received a third, booster dose (11 T1D; 9 controls), we found that the booster dose increased neutralizing antibody titers against ancestral SARS-CoV-2 strains but, unexpectedly, not Omicron lineage variants. In contrast, boosting enhanced Omicron variant neutralizing antibody titers in adults.
Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Adulto , Humanos , Criança , Vacinas contra COVID-19 , SARS-CoV-2 , Vacinas de mRNA , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
INTRODUCTION: Prior research on the effects of social media promotion of tobacco products has predominantly relied on survey-based self-report measures of marketing exposure, which potentially introduce endogeneity, recall, and selection biases. New approaches can enhance measurement and help better understand the effects of exposure to tobacco-related messages in a dynamic social media marketing environment. We used geolocation-specific tweet rate as an exogenous indicator of exposure to smokeless tobacco (ST)-related content and employed this measure to examine the influence of social media marketing on ST sales. AIMS AND METHODS: Autoregressive error models were used to analyze the association between the ST-relevant tweet rate (aggregated by 4-week period from February 12, 2017 to June 26, 2021 and scaled by population density) and logarithmic ST unit sales across time by product type (newer, snus, conventional) in the United States, accounting for autocorrelated errors. Interrupted time series approach was used to control for policy change effects. RESULTS: ST product category-related tweet rates were associated with ST unit sales of newer and conventional products, controlling for price, relevant policy events, and the coronavirus disease 2019 (COVID-19) pandemic. On average, 100-unit increase in the number of newer ST-related tweets was associated with 14% increase in unit sales (RRâ =â 1.14; pâ =â .01); 100-unit increase in conventional ST tweets was associated with ~1% increase in unit sales (pâ =â .04). Average price was negatively associated with the unit sales. CONCLUSIONS: Study findings reveal that ST social media tweet rate was related to increased ST consumption and illustrate the utility of exogenous measures in conceptualizing and assessing effects in the complex media environment. IMPLICATIONS: Tobacco control initiatives should include efforts to monitor the role of social media in promoting tobacco use. Surveillance of social media platforms is critical to monitor emerging tobacco product-related marketing strategies and promotional content reach. Exogenous measures of potential exposure to social media messages can supplement survey data to study media effects on tobacco consumption.
Assuntos
Mídias Sociais , Produtos do Tabaco , Tabaco sem Fumaça , Humanos , Estados Unidos/epidemiologia , Exposição à Mídia , Comércio , Marketing , Uso de TabacoRESUMO
Cre recombinase selectively recognizes DNA and prevents non-specific DNA cleavage through an orchestrated series of assembly intermediates. Cre recombines two loxP DNA sequences featuring a pair of palindromic recombinase binding elements and an asymmetric spacer region, by assembly of a tetrameric synaptic complex, cleavage of an opposing pair of strands, and formation of a Holliday junction intermediate. We used Cre and loxP variants to isolate the monomeric Cre-loxP (54 kDa), dimeric Cre2-loxP (110 kDa), and tetrameric Cre4-loxP2 assembly intermediates, and determined their structures using cryo-EM to resolutions of 3.9, 4.5 and 3.2 Å, respectively. Progressive and asymmetric bending of the spacer region along the assembly pathway enables formation of increasingly intimate interfaces between Cre protomers and illuminates the structural bases of biased loxP strand cleavage order and half-the-sites activity. Application of 3D variability analysis to the tetramer data reveals constrained conformational sampling along the pathway between protomer activation and Holliday junction isomerization. These findings underscore the importance of protein and DNA flexibility in Cre-mediated site selection, controlled activation of alternating protomers, the basis for biased strand cleavage order, and recombination efficiency. Such considerations may advance development of site-specific recombinases for use in gene editing applications.
Assuntos
DNA Cruciforme , Proteínas Virais , Sítios de Ligação , Microscopia Crioeletrônica , DNA/química , Integrases/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Subunidades Proteicas/genética , Recombinação Genética , Proteínas Virais/metabolismoRESUMO
RNase P is a ribonucleoprotein (RNP) that catalyzes removal of the 5' leader from precursor tRNAs in all domains of life. A recent cryo-EM study of Methanocaldococcus jannaschii (Mja) RNase P produced a model at 4.6-Å resolution in a dimeric configuration, with each holoenzyme monomer containing one RNase P RNA (RPR) and one copy each of five RNase P proteins (RPPs; POP5, RPP30, RPP21, RPP29, L7Ae). Here, we used native mass spectrometry (MS), mass photometry (MP), and biochemical experiments that (i) validate the oligomeric state of the Mja RNase P holoenzyme in vitro, (ii) find a different stoichiometry for each holoenzyme monomer with up to two copies of L7Ae, and (iii) assess whether both L7Ae copies are necessary for optimal cleavage activity. By mutating all kink-turns in the RPR, we made the discovery that abolishing the canonical L7Ae-RPR interactions was not detrimental for RNase P assembly and function due to the redundancy provided by protein-protein interactions between L7Ae and other RPPs. Our results provide new insights into the architecture and evolution of RNase P, and highlight the utility of native MS and MP in integrated structural biology approaches that seek to augment the information obtained from low/medium-resolution cryo-EM models.
Assuntos
Proteínas Arqueais , Methanocaldococcus , Ribonuclease P , Proteínas Arqueais/metabolismo , Methanocaldococcus/enzimologia , Methanocaldococcus/genética , Conformação Proteica , RNA de Transferência/metabolismo , Ribonuclease P/metabolismo , Relação Estrutura-AtividadeRESUMO
Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. A long-standing design approach uses genetic fusion to join protein homo-oligomer subunits via α-helical linkers to form more complex symmetric assemblies, but this method is hampered by linker flexibility and a dearth of geometric solutions. Here, we describe a general computational method for rigidly fusing homo-oligomer and spacer building blocks to generate user-defined architectures that generates far more geometric solutions than previous approaches. The fusion junctions are then optimized using Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric protein assemblies using a set of designed homodimers and repeat protein building blocks. Experimental validation by native mass spectrometry, small-angle X-ray scattering, and negative-stain single-particle electron microscopy confirms the assembly states for 11 designs. Most of these assemblies are constructed from designed ankyrin repeat proteins (DARPins), held in place on one end by α-helical fusion and on the other by a designed homodimer interface, and we explored their use for cryogenic electron microscopy (cryo-EM) structure determination by incorporating DARPin variants selected to bind targets of interest. Although the target resolution was limited by preferred orientation effects and small scaffold size, we found that the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to cryo-EM structure determination of small proteins.
Assuntos
Nanoestruturas/química , Engenharia de Proteínas , Proteínas/química , Repetição de Anquirina , Nanoestruturas/ultraestrutura , Conformação Proteica em alfa-Hélice , Proteínas/genética , Proteínas/ultraestruturaRESUMO
The interaction of an acoustic plane wave with a pair of plates connected by periodically spaced stiffeners in water is considered. The rib-stiffened structure is called a "flex-layer" because its low frequency response is dominated by bending stiffness. The quasi-static behavior is equivalent to a homogeneous layer of compressible fluid, which we identify as air for the purposes of comparison. In this way, an air layer is acoustically the same as a pair of thin elastic plates connected by a periodic spacing of ribs. At discrete higher frequencies, the flex-layer exhibits perfect acoustic transmission, the cause of which is identified as fluid-loaded plate waves propagating back and forth between the ribs. Both the low and finite frequency behavior of the flex-layer are fully explained by closed-form solutions for reflection and transmission. The analytical model is extended to two flex-layers in series, introducing new low and high frequency phenomena that are explained in terms of simple lumped parameter models.
RESUMO
It is known that total absorption of flexural waves in a thin beam is possible through the use of monopole-dipole scatterers. In this study, we introduce a pair of identical monopole scatterers for near-total absorption of flexural waves in a thin and wide beam. Despite the two scatterers being both of the monopole type, the resonant modes of the scatterer pair exhibit monopole and dipole properties. By selecting the proper width for the beam, the two resonant modes degenerate, which leads to the total absorption. Although the beam is considerably wide, the frequency range of interest remains below the cut-on frequency of the n = 1 propagating mode, ensuring one-dimensional flexural wave propagation. Further simulations and theoretical analysis revealed that the degeneracy of the monopole and dipole modes results from their interaction with a higher-order localized flexural mode. The simulation results demonstrate absorption exceeding 99%, complemented by experimental data showing approximately 90% absorption.
RESUMO
Redß is a single strand annealing protein from bacteriophage λ that binds loosely to ssDNA, not at all to pre-formed dsDNA, but tightly to a duplex intermediate of annealing. As viewed by electron microscopy, Redß forms oligomeric rings on ssDNA substrate, and helical filaments on the annealed duplex intermediate. However, it is not clear if these are the functional forms of the protein in vivo. We have used size-exclusion chromatography coupled with multi-angle light scattering, analytical ultracentrifugation and native mass spectrometry (nMS) to characterize the size of the oligomers formed by Redß in its different DNA-bound states. The nMS data, which resolve species with the highest resolution, reveal that Redß forms an oligomer of 12 subunits in the absence of DNA, complexes ranging from 4 to 14 subunits on 38-mer ssDNA, and a much more distinct and stable complex of 11 subunits on 38-mer annealed duplex. We also measure the concentration of Redß in cells active for recombination and find it to range from 7 to 27 µM. Collectively, these data provide new insights into the dynamic nature of the complex on ssDNA, and the more stable and defined complex on annealed duplex.
Assuntos
Bacteriófago lambda , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Virais/metabolismo , Cromatografia em Gel , DNA/metabolismo , Luz , Espectrometria de Massas , Ligação Proteica , Multimerização Proteica , Espalhamento de Radiação , UltracentrifugaçãoRESUMO
Persons with cystic fibrosis (CF) exhibit a unique alteration of fatty acid composition, marked especially among polyunsaturates by relative deficiency of linoleic acid and excess of Mead acid. Relative deficiency of docosahexaenoic acid is variably found. However, the initial development of these abnormalities is not understood. We examined fatty acid composition in young CF ferrets and pigs, finding abnormalities from the day of birth onward including relative deficiency of linoleic acid in both species. Fatty acid composition abnormalities were present in both liver and serum phospholipids of newborn CF piglets even prior to feeding, including reduced linoleic acid and increased Mead acid. Serum fatty acid composition evolved over the first weeks of life in both non-CF and CF ferrets, though differences between CF and non-CF persisted. Although red blood cell phospholipid fatty acid composition was normal in newborn animals, it became perturbed in juvenile CF ferrets including relative deficiencies of linoleic and docosahexaenoic acids and excess of Mead acid. In summary, fatty acid composition abnormalities in CF pigs and ferrets exist from a young age including at birth independent of feeding and overlap extensively with the abnormalities found in humans with CF. That the abnormalities exist prior to feeding implies that dietary measures alone will not address the mechanisms of imbalance.
Assuntos
Fibrose Cística , Humanos , Animais , Suínos , Ácidos Graxos , Furões , Fosfolipídeos , Ácidos Docosa-Hexaenoicos , Ácidos LinoleicosRESUMO
To fulfill their biological functions, proteins must interact with their specific binding partners and often function as large assemblies composed of multiple proteins or proteins plus other biomolecules. Structural characterization of these complexes, including identification of all binding partners, their relative binding affinities, and complex topology, is integral for understanding function. Understanding how proteins assemble and how subunits in a complex interact is a cornerstone of structural biology. Here we report a native mass spectrometry (MS)-based method to characterize subunit interactions in globular protein complexes. We demonstrate that dissociation of protein complexes by surface collisions, at the lower end of the typical surface-induced dissociation (SID) collision energy range, consistently cleaves the weakest protein:protein interfaces, producing products that are reflective of the known structure. We present here combined results for multiple complexes as a training set, two validation cases, and four computational models. We show that SID appearance energies can be predicted from structures via a computationally derived expression containing three terms (number of residues in a given interface, unsatisfied hydrogen bonds, and a rigidity factor).
Assuntos
Proteínas/química , Simulação por Computador , Ligação de Hidrogênio , Espectrometria de Massas , Ligação Proteica , Propriedades de SuperfícieRESUMO
Propagation of sound through a non-uniform medium without scattering is possible, in principle, if the density and acoustic compressibility assume complex values, requiring passive and active mechanisms, also known as Hermitian and non-Hermitian solutions, respectively. Two types of constant intensity wave conditions are identified: in the first, the propagating acoustic pressure has constant amplitude, while in the second, the energy flux remains constant. The fundamental problem of transmission across an impedance discontinuity without reflection or energy loss is solved using a combination of monopole and dipole resonators in parallel. The solution depends on an arbitrary phase angle that can be chosen to give a unique acoustic metamaterial with both resonators undamped and passive, requiring purely Hermitian acoustic elements. For other phase angles, one of the two elements must be active and the other passive, resulting in a gain/loss non-Hermitian system. These results prove that uni-directional and reciprocal transmission through a slab separating two half spaces is possible using passive Hermitian acoustic elements without the need to resort to active gain/loss energetic mechanisms.
RESUMO
A metamaterial of particular interest for underwater applications is the three-dimensional (3D) anisotropic pentamode (PM), i.e., a structure designed to support a single longitudinal wave with a sound speed that depends on the propagation direction. The present work attempts to experimentally verify anisotropic sound speeds predicted by finite element simulations using additively manufactured anisotropic 3D PM samples made of titanium. The samples were suspended in front of a plane wave source emitting a broadband chirp in a water tank to measure time of flight for wavefronts with and without the PM present. The measurement utilizes a deconvolution method that extracts the band limited impulse response of data gathered by a scanning hydrophone in a plane of constant depth behind the samples. Supporting material takes the form of finite element simulations developed to model the response of a semi-infinite PM medium to an incident normal plane wave. A technique to extract the longitudinal PM wave speed for frequency domain simulations based on Fourier series expansions is given.
RESUMO
Dual topological materials are unique topological phases that host coexisting surface states of different topological nature on the same or on different material facets. Here, we show that Bi2TeI is a dual topological insulator. It exhibits band inversions at two time reversal symmetry points of the bulk band, which classify it as a weak topological insulator with metallic states on its 'side' surfaces. The mirror symmetry of the crystal structure concurrently classifies it as a topological crystalline insulator. We investigated Bi2TeI spectroscopically to show the existence of both two-dimensional Dirac surface states, which are susceptible to mirror symmetry breaking, and one-dimensional channels that reside along the step edges. Their mutual coexistence on the step edge, where both facets join, is facilitated by momentum and energy segregation. Our observation of a dual topological insulator should stimulate investigations of other dual topology classes with distinct surface manifestations coexisting at their boundaries.
RESUMO
BACKGROUND: /Objectives: The pathogenesis of hyperglycemia during acute pancreatitis (AP) remains unknown due to inaccessibility of human tissues and lack of animal models. We aimed to develop an animal model to study the mechanisms of hyperglycemia and impaired glucose tolerance in AP. METHODS: We injected ferrets with intraperitoneal cerulein (50 µg/kg, 9 hourly injections) or saline. Blood samples were collected for glucose (0, 4, 8, 12, 24h); TNF-α, IL-6 (6h); amylase, lipase, insulin, glucagon, pancreatic polypeptide (PP), glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP) (24h). Animals underwent oral glucose tolerance test (OGTT), mixed meal tolerance test (MMTT) at 24h or 3 months, followed by harvesting pancreas for histopathology and immunostaining. RESULTS: Cerulein-injected ferrets exhibited mild pancreatic edema, neutrophil infiltration, and elevations in serum amylase, lipase, TNF-α, IL-6, consistent with AP. Plasma glucose was significantly higher in ferrets with AP at all time points. Plasma glucagon, GLP-1 and PP were significantly higher in cerulein-injected animals, while plasma insulin was significantly lower compared to controls. OGTT and MMTT showed abnormal glycemic responses with higher area under the curve. The hypoglycemic response to insulin injection was completely lost, suggestive of insulin resistance. OGTT showed low plasma insulin; MMTT confirmed low insulin and GIP; abnormal OGTT and MMTT responses returned to normal 3 months after cerulein injection. CONCLUSIONS: Acute cerulein injection causes mild acute pancreatitis in ferrets and hyperglycemia related to transient islet cell dysfunction and insulin resistance. The ferret cerulein model may contribute to the understanding of hyperglycemia in acute pancreatitis.
Assuntos
Hiperglicemia , Resistência à Insulina , Pancreatite , Doença Aguda , Amilases , Animais , Glicemia , Ceruletídeo/toxicidade , Furões , Polipeptídeo Inibidor Gástrico , Glucagon , Peptídeo 1 Semelhante ao Glucagon , Humanos , Insulina , Interleucina-6 , Lipase , Pancreatite/induzido quimicamente , Pancreatite/veterinária , Fator de Necrose Tumoral alfaRESUMO
Actin is an essential element of both innate and adaptive immune systems and can aid in motility and translocation of bacterial pathogens, making it an attractive target for bacterial toxins. Pathogenic Vibrio and Aeromonas genera deliver actin cross-linking domain (ACD) toxin into the cytoplasm of the host cell to poison actin regulation and promptly induce cell rounding. At early stages of toxicity, ACD covalently cross-links actin monomers into oligomers (AOs) that bind through multivalent interactions and potently inhibit several families of actin assembly proteins. At advanced toxicity stages, we found that the terminal protomers of linear AOs can get linked together by ACD to produce cyclic AOs. When tested against formins and Ena/VASP, linear and cyclic AOs exhibit similar inhibitory potential, which for the cyclic AOs is reduced in the presence of profilin. In coarse-grained molecular dynamics simulations, profilin and WH2-motif binding sites on actin subunits remain exposed in modeled AOs of both geometries. We speculate, therefore, that the reduced toxicity of cyclic AOs is due to their reduced configurational entropy. A characteristic feature of cyclic AOs is that, in contrast to the linear forms, they cannot be straightened to form filaments (e.g., through stabilization by cofilin), which makes them less susceptible to neutralization by the host cell.
Assuntos
Actinas/química , Actinas/metabolismo , Toxinas Bacterianas/metabolismo , Multimerização Proteica , Citoesqueleto de Actina/metabolismo , Animais , Toxinas Bacterianas/química , Sítios de Ligação , Catálise , Linhagem Celular Tumoral , Sequência Conservada , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Vibrio cholerae/metabolismoRESUMO
The islets of Langerhans are well embedded within the exocrine pancreas (the latter comprised of ducts and acini), but the nature of interactions between these pancreatic compartments and their role in determining normal islet function and survival are poorly understood. However, these interactions appear to be critical, as when pancreatic exocrine disease occurs, islet function and insulin secretion frequently decline to the point that diabetes ensues, termed pancreatogenic diabetes. The most common forms of pancreatogenic diabetes involve sustained exocrine disease leading to ductal obstruction, acinar inflammation, and fibro-fatty replacement of the exocrine pancreas that predates the development of dysfunction of the endocrine pancreas, as seen in chronic pancreatitis-associated diabetes and cystic fibrosis-related diabetes and, more rarely, MODY type 8. Intriguingly, a form of tumour-induced diabetes has been described that is associated with pancreatic ductal adenocarcinoma. Here, we review the similarities and differences among these forms of pancreatogenic diabetes, with the goal of highlighting the importance of exocrine/ductal homeostasis for the maintenance of pancreatic islet function and survival and to highlight the need for a better understanding of the mechanisms underlying these diverse conditions. Graphical abstract.
Assuntos
Fibrose Cística/metabolismo , Diabetes Mellitus/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas Exócrino/metabolismo , Pancreatite Crônica/metabolismo , Animais , Carcinoma Ductal Pancreático/complicações , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Fibrose Cística/complicações , Fibrose Cística/patologia , Diabetes Mellitus/etiologia , Humanos , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/fisiopatologia , Pâncreas Exócrino/patologia , Pâncreas Exócrino/fisiopatologia , Pancreatopatias/complicações , Pancreatopatias/metabolismo , Pancreatopatias/patologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/complicações , Pancreatite Crônica/patologiaRESUMO
Research on breaking time-reversal symmetry to realize one-way wave propagation is a growing area in photonic and phononic crystals and metamaterials. In this Letter, we present physical realization of an acoustic waveguide with spatiotemporally modulated boundary conditions to realize nonreciprocal transport and acoustic topological pumping. The modulated waveguide inspired by a water wheel consists of a helical tube rotating around a slotted tube at a controllable speed. The rotation of the helical tube creates moving boundary conditions for the exposed waveguide sections at a constant speed. We experimentally demonstrate acoustic nonreciprocity and topologically robust bulk-edge correspondences for this system, which is in good agreement with analytical and numerical predictions. The nonreciprocal waveguide is a one-dimensional analog to the two-dimensional quantum Hall effect for acoustic circulators and is characterized by a robust integer-valued Chern number. These findings provide insight into practical implications of topological modes in acoustics and the implementation of higher-dimensional topological acoustics where time serves as a synthetic dimension.
RESUMO
In cystic fibrosis (CF), there is early destruction of the exocrine pancreas, and this results in a unique form of diabetes that affects approximately half of adult CF individuals. An animal model of cystic fibrosis-related diabetes has been developed in the ferret, which progresses through phases of glycemic abnormalities because of islet remodeling during and after exocrine destruction. Herein, we quantified the pancreatic histopathological changes that occur during these phases. There was an increase in percentage ductal, fat, and islet area in CF ferrets over time compared with age-matched wild-type controls. We also quantified islet size, shape, islet cell composition, cell proliferation (Ki-67), and expression of remodeling markers (matrix metalloprotease-7, desmin, and α-smooth muscle actin). Pancreatic ducts were dilated with scattered proliferating cells and were surrounded by activated stellate cells, indicative of tissue remodeling. The timing of islet and duct proliferation, stellate cell activation, and matrix remodeling coincided with the previously published stages of glycemic crisis and inflammation. This mapping of remodeling events in the CF ferret pancreas provides insights into early changes that control glycemic intolerance and subsequent recovery during the evolution of CF pancreatic disease.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Furões/metabolismo , Técnicas de Inativação de Genes , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Tecido Adiposo/patologia , Envelhecimento/patologia , Animais , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Humanos , Hiperplasia , Antígeno Ki-67/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Modelos Biológicos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Regulação para Cima/genéticaRESUMO
The possibility of asymmetric absorption and reflection for flexural waves is demonstrated through analytical and numerical examples. The emphasis is on the one-dimensional (1D) case of flexural motion of a beam for which combinations of point scatterers are considered, which together provide asymmetric scattering. The scatterers are attached damped oscillators characterized by effective impedances, analogous to effective configurations in 1D acoustic waveguides. By selecting the impedances of a pair of closely spaced scatterers it is shown that it is possible to obtain almost total absorption for incidence on one side, with almost total reflection if incident from the other side. The one-way absorption is illustrated through numerous examples of impedance pairs that satisfy the necessary conditions for zero reflectivity for incidence from one direction. Examples of almost total and zero reflection for different incidences are examined in detail, showing the distinct wave dynamics of flexural waves as compared with acoustics.
RESUMO
Several integral identities related to acoustic scattering are presented. In each case the identity involves the integral over frequency of a physical quantity. For instance, the integrated transmission loss, a measure of the transmitted acoustic energy through an inhomogeneous layer, is shown to have a simple expression in terms of spatially averaged physical quantities. Known identities for the extinction cross section and for the acoustic energy loss in a slab with a rigid backing, are shown to be special cases of a general procedure for finding such integral identities.