Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 61(14): 4030-4039, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36256076

RESUMO

Image security is becoming an increasingly important issue due to advances in deep learning based image manipulations, such as deep image inpainting and deepfakes. There has been considerable work to date on detecting such image manipulations using improved algorithms, with little attention paid to the possible role that hardware advances may have for improving security. We propose to use a focal stack camera as a novel secure imaging device, to the best of our knowledge, that facilitates localizing modified regions in manipulated images. We show that applying convolutional neural network detection methods to focal stack images achieves significantly better detection accuracy compared to single image based forgery detection. This work demonstrates that focal stack images could be used as a novel secure image file format and opens up a new direction for secure imaging.

2.
Opt Express ; 29(10): 14245-14259, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985148

RESUMO

The ability of phase-change materials to reversibly and rapidly switch between two stable phases has driven their use in a number of applications such as data storage and optical modulators. Incorporating such materials into metasurfaces enables new approaches to the control of optical fields. In this article we present the design of novel switchable metasurfaces that enable the control of the nonclassical two-photon quantum interference. These structures require no static power consumption, operate at room temperature, and have high switching speed. For the first adaptive metasurface presented in this article, tunable nonclassical two-photon interference from -97.7% (anti-coalescence) to 75.48% (coalescence) is predicted. For the second adaptive geometry, the quantum interference switches from -59.42% (anti-coalescence) to 86.09% (coalescence) upon a thermally driven crystallographic phase transition. The development of compact and rapidly controllable quantum devices is opening up promising paths to brand-new quantum applications as well as the possibility of improving free space quantum logic gates, linear-optics bell experiments, and quantum phase estimation systems.

3.
Nat Mater ; 18(8): 820-826, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31263226

RESUMO

Terahertz circular dichroism (TCD) offers multifaceted spectroscopic capabilities for understanding the mesoscale chiral architecture and low-energy vibrations of macromolecules in (bio)materials1-5. However, the lack of dynamic polarization modulators comparable to polarization optics for other parts of the electromagnetic spectrum is impeding the proliferation of TCD spectroscopy6-11. Here we show that tunable optical elements fabricated from patterned plasmonic sheets with periodic kirigami cuts make possible the polarization modulation of terahertz radiation under application of mechanical strain. A herringbone pattern of microscale metal stripes enables a dynamic range of polarization rotation modulation exceeding 80° over thousands of cycles. Following out-of-plane buckling, the plasmonic stripes function as reconfigurable semi-helices of variable pitch aligned along the terahertz propagation direction. Several biomaterials, exemplified by an elytron of the Chrysina gloriosa, revealed distinct TCD fingerprints associated with the helical substructure in the biocomposite. Analogous kirigami modulators will also enable other applications in terahertz optics, such as polarization-based terahertz imaging, line-of-sight telecommunication, information encryption and space exploration.


Assuntos
Materiais Biocompatíveis/química , Dicroísmo Circular/métodos , Radiação Terahertz
4.
Opt Lett ; 43(3): 419-422, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400804

RESUMO

A simple imaging system, together with complex semidefinite programming, is used to generate the transmission matrix (TM) of a multimode fiber. Once the TM is acquired, we can modulate the phase of the input signal to induce strong mode interference at the fiber output. The optical design does not contain a reference arm, no internal reference signal is used, and no interferometric measurements are required. We use a phase-only spatial light modulator to shape the profile of the propagating modes, and the output intensity patterns are collected. The semidefinite program uses a convex optimization algorithm to generate the TM of the optical system using intensity only measurements. This simple, yet powerful, method can be used to compensate for modal dispersion in multimode fiber communication systems. It also yields great promise for the next generation biomedical imaging, quantum communication, and cryptography.

5.
Opt Lett ; 41(3): 444-7, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26907393

RESUMO

We consider the scattering of entangled two-photon states from collections of small particles. We also study the related Mie problem of scattering from a sphere. In both cases, we calculate the entropy of entanglement and investigate the influence of the entanglement of the incident field on the entanglement of the scattered field.


Assuntos
Fótons , Espalhamento de Radiação , Modelos Teóricos , Teoria Quântica
6.
Nano Lett ; 15(6): 4234-9, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25993273

RESUMO

The photo-Dember effect arises from the asymmetric diffusivity of photoexcited electrons and holes, which creates a transient spatial charge distribution and hence the buildup of a voltage. Conventionally, a strong photo-Dember effect is only observed in semiconductors with a large asymmetry between the electron and hole mobilities, such as in GaAs or InAs, and is considered negligible in graphene due to its electron-hole symmetry. Here, we report the observation of a strong lateral photo-Dember effect induced by nonequilibrium hot carrier dynamics when exciting a graphene-metal interface with a femtosecond laser. Scanning photocurrent measurements reveal the extraction of photoexcited hot carriers is driven by the transient photo-Dember field, and the polarity of the photocurrent is determined by the device's mobility asymmetry. Furthermore, ultrafast pump-probe measurements indicate the magnitude of photocurrent is related to the hot carrier cooling rate. Our simulations also suggest that the lateral photo-Dember effect originates from graphene's 2D nature combined with its unique electrical and optical properties. Taken together, these results not only reveal a new ultrafast photocurrent generation mechanism in graphene but also suggest new types of terahertz sources based on 2D nanomaterials.

7.
Cancer ; 118(8): 2148-56, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22488668

RESUMO

BACKGROUND: Growth factor receptors such as epidermal growth factor receptor 1 and human epidermal growth receptor 2 (HER2) are overexpressed in certain cancer cells. Antibodies against these receptors (eg. cetuximab and transtuzumab [Herceptin]) have shown therapeutic value in cancer treatment. The existing methods for the quantification of these receptors in tumors involve immunohistochemistry or DNA quantification, both in extracted tissue samples. The goal of the study was to evaluate whether an optical fiber-based technique can be used to quantify the expression of multiple growth factor receptors simultaneously. METHODS: The authors examined HER2 expression using the monoclonal antibody trastuzumab as a targeting ligand to test their system. They conjugated trastuzumab to 2 different Alexa Fluor dyes with different excitation and emission wavelengths. Two of the dye conjugates were subsequently injected intravenously into mice bearing HER2-expressing subcutaneous tumors. An optical fiber was then inserted into the tumor through a 30-gauge needle, and using a single laser beam as the excitation source, the fluorescence emitted by the 2 conjugates was identified and quantified by 2-photon optical fiber fluorescence. RESULTS: The 2 conjugates bound to the HER2-expressing tumor competitively in a receptor-specific fashion, but they failed to bind to a similar cell tumor that did not express HER2. The concentration of the conjugate present in the tumor as determined by 2-photon optical fiber fluorescence was shown to serve as an index of the HER2 expression levels. CONCLUSIONS: These studies offer a minimally invasive technique for the quantification of tumor receptors simultaneously.


Assuntos
Fibras Ópticas , Receptores de Fatores de Crescimento/análise , Animais , Anticorpos Monoclonais Humanizados , Carbocianinas , Linhagem Celular Tumoral , Receptores ErbB/análise , Feminino , Corantes Fluorescentes , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Receptor ErbB-2/análise , Trastuzumab
8.
Sci Rep ; 12(1): 22256, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564431

RESUMO

Coherent backscattering (CBS) arises from complex interactions of a coherent beam with randomly positioned particles, which has been typically studied in media with large numbers of scatterers and high opacity. We develop a first-principles scattering model for scalar waves to study the CBS cone formation in finite-sized and sparse random media with specific geometries. The current study provides insights into the effects of density, volume size, and other relevant parameters on the angular characteristics of the CBS cone emerging from sparse and bounded random media for various types of illumination, with results consistent with well-known CBS studies which are typically based on samples with much larger number of scatterers and higher opacity. The enhancements are observed in scattering medium with dimensions between 10× and 40× wavelength and the number of particles as few as 370. This work also highlights some of the potentials and limitations of employing the CBS phenomenon to characterize disordered configurations. The method developed here provides a foundation for studies of complex electromagnetic fields beyond simple incident classical beams in randomized geometries, including structured wavefronts in illumination and quantized fields for investigating the effects of the quantum nature of light in multiple scattering, with no further numerical complications.

9.
Nat Commun ; 13(1): 6404, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302852

RESUMO

Semiconductor photoconductive switches are useful and versatile emitters of terahertz (THz) radiation with a broad range of applications in THz imaging and time-domain spectroscopy. One fundamental challenge for achieving efficient ultrafast switching, however, is the relatively long carrier lifetime in most common semiconductors. To obtain picosecond ultrafast pulses, especially when coupled with waveguides/transmission lines, semiconductors are typically engineered with high defect density to reduce the carrier lifetimes, which in turn lowers the overall power output of the photoconductive switches. To overcome this fundamental trade-off, here we present a new hybrid photoconductive switch design by engineering a hot-carrier fast lane using graphene on silicon. While photoexcited carriers are generated in the silicon layer, similar to a conventional switch, the hot carriers are transferred to the graphene layer for efficient collection at the contacts. As a result, the graphene-silicon hybrid photoconductive switch emits THz fields with up to 80 times amplitude enhancement compared to its graphene-free counterpart. These results both further the understanding of ultrafast hot carrier transport in such hybrid systems and lay the groundwork toward intrinsically more powerful THz devices based on 2D-3D hybrid heterostructures.

10.
Nano Lett ; 10(4): 1293-6, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20210362

RESUMO

We report generation of ballistic electric currents in unbiased epitaxial graphene at 300 K via quantum interference between phase-controlled cross-polarized fundamental and second harmonic 220 fs pulses. The transient currents are detected via the emitted terahertz radiation. Because of graphene's special structure symmetry, the injected current direction can be well controlled by the polarization of the pump beam in epitaxial graphene. This all optical injection of current provides not only a noncontact way of injecting directional current in graphene but also new insight into optical and transport process in epitaxial graphene.


Assuntos
Grafite/química , Teoria Quântica , Condutividade Elétrica , Nanotecnologia/métodos , Fotoquímica
11.
Nat Commun ; 12(1): 2413, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893300

RESUMO

Recent years have seen the rapid growth of new approaches to optical imaging, with an emphasis on extracting three-dimensional (3D) information from what is normally a two-dimensional (2D) image capture. Perhaps most importantly, the rise of computational imaging enables both new physical layouts of optical components and new algorithms to be implemented. This paper concerns the convergence of two advances: the development of a transparent focal stack imaging system using graphene photodetector arrays, and the rapid expansion of the capabilities of machine learning including the development of powerful neural networks. This paper demonstrates 3D tracking of point-like objects with multilayer feedforward neural networks and the extension to tracking positions of multi-point objects. Computer simulations further demonstrate how this optical system can track extended objects in 3D, highlighting the promise of combining nanophotonic devices, new optical system designs, and machine learning for new frontiers in 3D imaging.

12.
Anal Chem ; 82(12): 5211-8, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20486666

RESUMO

Real-time measurement of specific biomolecular interactions is critical to many areas of biological research. A number of label-free techniques for directly monitoring biomolecular binding have been developed, but it is still challenging to measure the binding kinetics of very small molecules, to detect low concentrations of analyte molecules, or to detect low affinity interactions. In this study, we report the development of a highly sensitive photonic crystal biosensor for label-free, real-time biomolecular binding analysis. We characterize the performance of this biosensor using a standard streptavidin-biotin binding system. Optimization of the surface functionalization methods for streptavidin immobilization on the silica sensing surface is presented, and the specific binding of biotinylated analyte molecules ranging over 3 orders of magnitude in molecular weight, including very small molecules (<250 Da), DNA oligonucleotides, proteins, and antibodies (>150 000 Da), are detected in real time with a high signal-to-noise ratio. Finally, we document the sensor efficiency for low mass adsorption, as well as multilayered molecular interactions. By all important metrics for sensitivity, we anticipate this photonic crystal biosensor will provide new capabilities for highly sensitive measurements of biomolecular binding.


Assuntos
Técnicas Biossensoriais/métodos , Biotina/metabolismo , Estreptavidina/metabolismo , Anticorpos/metabolismo , Sítios de Ligação , Biotinilação , Oligonucleotídeos/metabolismo , Fótons , Ligação Proteica , Proteínas/metabolismo , Sensibilidade e Especificidade
13.
Phys Rev Lett ; 104(13): 136802, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20481901

RESUMO

The substrate-induced charge-density profile in carbon face epitaxial graphene is determined using nondegenerate ultrafast midinfrared pump-probe spectroscopy. Distinct zero crossings in the differential transmission spectra are used to identify the Fermi levels of layers within the multilayer stack. Probing within the transmission window of the SiC substrate, we find the Fermi levels of the first four heavily doped layers to be, respectively, 360, 215, 140, and 93 meV above the Dirac point. The charge screening length is determined to be one graphene layer, in good agreement with theoretical predictions.

14.
J Lumin ; 130(1): 29-34, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20160886

RESUMO

We demonstrate that DiI and Rhodamine B, which are not easily distinguishable to one-photon measurements, can be differentiated and in fact quantified in mixture via tailored two-photon excitation pulses found by a genetic algorithm (GA). A nearly three-fold difference in the ratio of two-photon fluorescence of the two dyes is achieved, without a drop in signal of the favored fluorophore. Implementing an acousto-optic interferometer, we were able to prove that the mechanism of discrimination is second-harmonic tuning by the phase-shaped pulses to the relative maxima and minima of these cross-sections.

15.
Opt Express ; 17(16): 13663-70, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19654774

RESUMO

We investigate two approaches to improving the resolution of time-reversal based THz imaging systems. First, we show that a substantial improvement in the reconstruction of time-reversed THz fields is achieved by increasing the system's numerical aperture via a waveguide technique adapted from ultrasound imaging. Second, a model-based reconstruction algorithm is developed as an alternative to time-reversal THz imaging and its performance is demonstrated for cases with and without a waveguide.


Assuntos
Algoritmos , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Dispositivos Ópticos , Imagem Terahertz/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Aumento da Imagem/métodos , Luz , Modelos Teóricos , Espalhamento de Radiação , Imagem Terahertz/métodos , Radiação Terahertz
16.
J Fluoresc ; 19(3): 517-32, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19082694

RESUMO

We present a comprehensive study of the selective excitation of two-photon fluorescence from various pairs of dyes and dyes in different conjugation states with tailored pulse shapes found with a genetic algorithm (GA). We investigate a number of biologically important dyes, and include dyes conjugated to trastuzumab (Herceptin(R)) and to a poly(amidoamine) dendrimer. We consider in detail the ability of tailored pulse shaping to discriminate dyes with significant spectral overlap. Our procedure for adaptive pulse shaping includes power-law and chirp-scaling checks to prevent trivial convergences. The GA uses a multiplicative fitness parameter in a graded search method that converges on pulse shapes that not only differentiate two-photon processes, but do so in a high signal regime. We consider the results in terms of not only the absolute maximum ratio of discrimination achieved, but also present the evolutionary course of the GA and compare the improvement to a quantitative measure of the noise level. We also implement a time-domain acousto-optic measurement of two-photon excitation cross-section spectra. The results show that the ability to discriminate dyes is determined almost entirely by their differences in two-photon excitation cross section.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Fótons , Algoritmos , Espectrometria de Fluorescência , Fatores de Tempo
17.
Biochem Biophys Res Commun ; 376(4): 733-7, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18817751

RESUMO

We demonstrate optical coherent control of the two-photon fluorescence of the blue fluorescent protein (BFP), which is of interest in investigations of protein-protein interactions. In addition to biological relevance, BFP represents an interesting target for coherent control from a chemical perspective due to its many components of highly nonexponential fluorescence decay and low quantum yield resulting from excited state isomerization. Using a genetic algorithm with a multiplicative (rather than ratiometric) fitness parameter, we are able to control the ratio of BFP fluorescence to second-harmonic generation without a considerable drop in the maximized signal. The importance of linear chirp and power-scaling on the discrimination process is investigated in detail.


Assuntos
Proteínas Luminescentes/química , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Proteínas Luminescentes/genética , Fótons
18.
Opt Express ; 16(17): 12640-9, 2008 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-18711501

RESUMO

We report on the utilization of a dual-clad optical fiber for two-photon excited fluorescence correlation spectroscopy (FCS). High excitation efficiency is obtained by sending prechirped ultrafast pulses through the single-mode core of the fiber, while the fluorescence collection efficiency is enhanced because of the larger numerical aperture of the inner cladding. We show that the utilization of a dual-clad fiber is critical for ultrasensitive two-photon fluorescence detection. Our system has the ability to detect fluorescent nanospheres as small as 12 nm in radius. Quantum dots of radius 7 nm are also measured and show excellent signal to noise ratio. The particle sizes obtained from the fiber FCS system were confirmed by measurements using a commercial dynamic light scattering (DLS) system.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Espectrometria de Fluorescência/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Fibras Ópticas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Opt Express ; 16(16): 11741-9, 2008 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-18679444

RESUMO

A novel optical sensor for label-free biomolecular binding assay using a one-dimensional photonic crystal in a total-internal-reflection geometry is proposed and demonstrated. The simple configuration provides a narrow optical resonance to enable sensitive measurements of molecular binding, and at the same time employs an open interface to enable real-time measurements of binding dynamics. Ultrathin aminopropyltriethoxysilane/ glutaraldehyde films adsorbed on the interface were detected by measuring the spectral shift of the photonic crystal resonance and the intensity ratio change in a differential reflectance measurement. A detection limit of 6 x 10(-5) nm for molecular layer thickness was obtained, which corresponds to a detection limit for analyte adsorption of 0.06 pg/mm(2) or a refractive index resolution of 3 x 10(-8) RIU; this represents a significant improvement relative to state-of-the-art surface-plasmon-resonance-based systems.


Assuntos
Biopolímeros/química , Técnicas Biossensoriais/instrumentação , Óptica e Fotônica/instrumentação , Fotometria/instrumentação , Mapeamento de Interação de Proteínas/métodos , Refratometria/instrumentação , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Fotometria/métodos , Fótons , Ligação Proteica , Refratometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Biomacromolecules ; 9(2): 603-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18193839

RESUMO

Binding of ligands on to epidermal growth factor receptor (EGFR) can stimulate cell growth; therefore, any application employing EGF as a targeting ligand for a "drug carrier" must evaluate the effect of the conjugate on cell growth. We report the synthesis and in vitro biological activity of EGF molecules coupled to a fluorescein-labeled polyamidoamine dendrimer. The conjugate bound and internalized into several EGFR-expressing cell lines in a receptor-specific fashion. The conjugate effectively induced EGFR phosphorylation and acted as a superagonist by stimulating cell growth to a greater degree than free EGF. Concomitant administration of the chemotherapeutic drug methotrexate completely inhibited cell growth to a degree similar to its effect in the absence of the conjugate. Thus, dendrimer-EGF conjugates serve as EGFR superagonists, but this activity can be overcome by chemotherapeutic drugs. The agonist activity of these materials must be taken into consideration when using EGF conjugates for imaging applications.


Assuntos
Dendrímeros/química , Fator de Crescimento Epidérmico/análogos & derivados , Receptores ErbB/agonistas , Animais , Linhagem Celular , Linhagem Celular Tumoral , Dendrímeros/metabolismo , Dendrímeros/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Camundongos , Ligação Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA