Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 88-96, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430036

RESUMO

Biosynthesis of silver nanoparticles using natural compounds derived from plant kingdom is currently used as safe and low-cost technique for nanoparticles synthesis with important abilities to inhibit multidrug resistant microorganisms (MDR). ESKAPE pathogens, especially MDR ones, are widely spread in hospital and intensive care units. In the present study, AgNPs using Ducrosia flabellifolia aqueous extract were synthesized using a reduction method. The green synthesized D. flabellifolia-AgNPs were characterized by UV-Vis spectrophotometer, Scanning electron microscopy (SEM), and X-ray diffraction assays. The tested D. flabellifolia aqueous extract was tested for its chemical composition using Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS). Anti-quorum sensing and anti-ESKAPE potential of D. flabellifolia-AgNPs was also performed.  Results from LC-ESI-MS technique revealed the identification of chlorogenic acid, protocatechuic acid, ferulic acid, caffeic acid, 2,5-dihydroxybenzoic acid, and gallic acid as main phytoconstituents. Indeed, the characterization of newly synthetized D. flabellifolia-AgNPs revealed spherical shape with mean particle size about 16.961±2.914 nm. Bio-reduction of silver was confirmed by the maximum surface plasmon resonance of D. flabellifolia-AgNPs at 430 nm. Newly synthetized D. flabellifolia-AgNPs were found to possess important anti-ESKAPE activity with low minimal inhibitory concentrations (MICs) ranging from 0.078 to 0.312 mg/mL, and low minimal bactericidal concentrations (MBCs) varying from 0.312 to 0.625 mg/mL. Moreover, D. flabellifolia-AgNPs were active against Candida utilis ATCC 9255, C. tropicalis ATCC 1362, and C. albicans ATCC 20402 with high mean diameter of growth inhibition at 5 mg/mL, low MICs, and minimal fungicidal concentrations values (MFCs). The newly synthetized D. flabellifolia-AgNPs were able to inhibit violacein production in Chromobacterium violaceum, pyocyanin in Pseudomonas aeruginosa starter strains.  Hence, the newly synthesized silver nanoparticles using D. flabellifolia aqueous extract can be used as an effective alternative to combat ESKAPE microorganisms. These silver nanoparticles can attenuate virulence of Gram-negative bacteria by interfering with the quorum sensing system and inhibiting cell-to-cell communication.


Assuntos
Anti-Infecciosos , Apiaceae , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Percepção de Quorum , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Candida albicans , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química
2.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067422

RESUMO

Illicium verum, or star anise, has many uses ranging from culinary to religious. It has been used in the food industry since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained via hydro-distillation of the aerial parts of Illicium verum. Twenty-four components were identified representing 92.55% of the analyzed essential oil. (E)-anethole (83.68%), limonene (3.19%), and α-pinene (0.71%) were the main constituents of I. verum EO. The results show that the obtained EO was effective against eight bacterial strains to different degrees. Concerning the antibiofilm activity, trans-anethole was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that I. verum EO possesses more potent inhibitory effects on the swarming behavior of PAO1 when compared to trans-anethole, with the percentage reaching 38% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirmed their important pharmacokinetic and drug-likeness properties. The in silico study using a molecular docking approach revealed a high binding score between the identified compounds with known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results suggest I. verum EO to be a potentially good antimicrobial agent to prevent food contamination with foodborne pathogenic bacteria.


Assuntos
Illicium , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Percepção de Quorum , Illicium/química , Simulação de Acoplamento Molecular , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Pseudomonas aeruginosa
3.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 143-162, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809292

RESUMO

Developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities is urgently needed to combat emerging human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since no available clinically antiviral drugs have been approved to eradicate COVID-19 as of the writing of this report, this study aimed to investigate bioactive short peptides from Allium subhirsutum L. (Hairy garlic) extracts identified through HR-LC/MS analysis that could potentially hinder the multiplication cycle of SARS-CoV-2 via molecular docking study. The obtained promising results showed that the peptides (Asn-Asn-Asn) possess the highest binding affinities of -8.4 kcal/mol against S protein, (His-Phe-Gln) of -9.8 kcal/mol and (Gln-His-Phe) of -9.7 kcal/mol towards hACE2, (Thr-Leu-Trp) of -10.3 kcal/mol and (Gln-Phe-Tyr) of -9.8 kcal/mol against furin. Additionally, the identified peptides show strong interactions with the targeted and pro-inflammatory ranging from -8.1 to -10.5 kcal/mol for NF-κB-inducing kinase (NIK), from -8.2 to -10 kcal/mol for phospholipase A2 (PLA2), from -8.0 to -10.7 kcal/mol for interleukin-1 receptor-associated kinase 4 (IRAK-4), and from -8.6 to -11.6 kcal/mol for the cyclooxygenase 2 (COX2) with Gln-Phe-Tyr model seems to be the most prominent. Results from pharmacophore, drug-likeness and ADMET prediction analyses clearly evidenced the usability of the peptides to be developed as an effective drug, beneficial for COVID-19 treatment.


Assuntos
Allium , Tratamento Farmacológico da COVID-19 , Antivirais/química , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2
4.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 387-398, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35818229

RESUMO

Despite the accelerated emerging of vaccines, development against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) drugs discovery is still in demand. Repurposing the existing drugs is an ideal time/cost-effective strategy to tackle the clinical impact of SARS CoV-2. Thereby, the present study is a promising strategy that proposes the repurposing of approved drugs against pivotal proteins that are responsible for the viral propagation of SARS-CoV-2 virus Angiotensin-converting enzyme-2 (ACE2; 2AJF), 3CL-protease: main protease (6LU7), Papain-like protease (6W9C), Receptor Binding Domain of Spike protein (6VW1), Transmembrane protease serine 2 (TMPRSS-2; 5AFW) and Furin (5MIM) by in silico methods. Molecular docking results were analyzed based on the binding energy and active site interactions accomplished with pharmacokinetic analysis. It was observed that both anisomycin and oleandomycin bind to all selected target proteins with good binding energy, achieving the most favorable interactions. Considering the results of binding affinity, pharmacokinetics and toxicity of anisomycin and oleandomycin, it is proposed that they can act as potential drugs against the SARS CoV-2 infection. Further clinical testing of the reported drugs is essential for their use in the treatment of SARS CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anisomicina , Antivirais/química , Antivirais/farmacologia , Reposicionamento de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , Oleandomicina
5.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364077

RESUMO

To combat emerging antimicrobial-resistant microbes, there is an urgent need to develop new antimicrobials with better therapeutic profiles. For this, a series of 13 new spiropyrrolidine derivatives were designed, synthesized, characterized and evaluated for their in vitro antimicrobial, antioxidant and antidiabetic potential. Antimicrobial results revealed that the designed compounds displayed good activity against clinical isolated strains, with 5d being the most potent (MIC 3.95 mM against Staphylococcus aureus ATCC 25923) compared to tetracycline (MIC 576.01 mM). The antioxidant activity was assessed by trapping DPPH, ABTS and FRAP assays. The results suggest remarkable antioxidant potential of all synthesized compounds, particularly 5c, exhibiting the strongest activity with IC50 of 3.26 ± 0.32 mM (DPPH), 7.03 ± 0.07 mM (ABTS) and 3.69 ± 0.72 mM (FRAP). Tested for their α-amylase inhibitory effect, the examined analogues display a variable degree of α-amylase activity with IC50 ranging between 0.55 ± 0.38 mM and 2.19 ± 0.23 mM compared to acarbose (IC50 1.19 ± 0.02 mM), with the most active compounds being 5d, followed by 5c and 5j, affording IC50 of 0.55 ± 0.38 mM, 0.92 ± 0.10 mM, and 0.95 ± 0.14 mM, respectively. Preliminary structure-activity relationships revealed the importance of such substituents in enhancing the activity. Furthermore, the ADME screening test was applied to optimize the physicochemical properties and determine their drug-like characteristics. Binding interactions and stability between ligands and active residues of the investigated enzymes were confirmed through molecular docking and dynamic simulation study. These findings provided guidance for further developing leading new spiropyrrolidine scaffolds with improved dual antimicrobial and antidiabetic activities.


Assuntos
Anti-Infecciosos , Antioxidantes , Antioxidantes/química , Simulação de Acoplamento Molecular , Quinoxalinas , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antibacterianos/química , Anti-Infecciosos/farmacologia , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
6.
Can J Infect Dis Med Microbiol ; 2022: 9410024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368519

RESUMO

The interest for green synthesis of metallic nanoparticles (NPs) has acquired particular attention due to its low toxicity and economic feasibility compared with chemical or physical process. Here we carried out an extracellular synthesis approach of silver nanoparticles (AgNPs) using dried orange peel extract. Characterization studies revealed the synthesis of 25-30 nm AgNPs with distinct morphology as observed in transmission electron microscopes. Dynamic light scattering spectroscopy and Fourier transform infrared spectroscopy analyses further characterized nanoparticles confirming their stability and the presence of functional groups. The biological properties of biosynthesized AgNPs were subsequently investigated. Our results revealed anticancer activity of biogenic silver NPs against the B16 melanoma cell line with an IC50 value of 25 µg/ml. Additionally, the developed AgNPs displayed a considerable antagonistic activity against methicillin-resistant Staphylococcus aureus (MRSA) strains colonizing cell phones, with inhibition zones between 12 and 14 mm and minimum inhibitory concentration values between 1.56 and 12.5 µg/ml. Furthermore, the AgNPs exhibited potent antibiofilm activity against MRSA strains with the percent biofilm disruption reaching 80%. Our results highlighted the efficacy of biosynthesized AgNPs against bacterial biofilms and pointed to the exploration of orange peels as a natural and cost-effective strategy.

7.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639036

RESUMO

Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Endorribonucleases/antagonistas & inibidores , SARS-CoV-2/enzimologia , Sesquiterpenos/farmacologia , Tomatina/análogos & derivados , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/farmacologia , COVID-19/virologia , Proteases 3C de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Endorribonucleases/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/efeitos dos fármacos , Tomatina/farmacologia , Proteínas não Estruturais Virais/metabolismo , Tratamento Farmacológico da COVID-19
8.
Molecules ; 26(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199316

RESUMO

Herbs and spices have been used since antiquity for their nutritional and health properties, as well as in traditional remedies for the prevention and treatment of many diseases. Therefore, this study aims to perform a chemical analysis of both essential oils (EOs) from the seeds of Carum carvi (C. carvi) and Coriandrum sativum (C. sativum) and evaluate their antioxidant, antimicrobial, anti-acetylcholinesterase, and antidiabetic activities alone and in combination. Results showed that the EOs mainly constitute monoterpenes with γ-terpinene (31.03%), ß-pinene (18.77%), p-cymene (17.16%), and carvone (12.20%) being the major components present in C. carvi EO and linalool (76.41%), γ-terpinene (5.35%), and α-pinene (4.44%) in C. sativum EO. In comparison to standards, statistical analysis revealed that C. carvi EO showed high and significantly different (p < 0.05) antioxidant activity than C. sativum EO, but lower than the mixture. Moreover, the mixture exhibited two-times greater ferric ion reducing antioxidant power (FRAP) (IC50 = 11.33 ± 1.53 mg/mL) and equipotent chelating power (IC50 = 31.33 ± 0.47 mg/mL) than the corresponding references, and also potent activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 19.00 ± 1.00 mg/mL), ß-carotene (IC50 = 11.16 ± 0.84 mg/mL), and superoxide anion (IC50 = 10.33 ± 0.58 mg/mL) assays. Antimicrobial data revealed that single and mixture EOs were active against a panel of pathogenic microorganisms, and the mixture had the ability to kill more bacterial strains than each EO alone. Additionally, the anti-acetylcholinesterase and α-glucosidase inhibitory effect have been studied for the first time, highlighting the high inhibition effect of AChE by C. carvi (IC50 = 0.82 ± 0.05 mg/mL), and especially by C. sativum (IC50 = 0.68 ± 0.03 mg/mL), as well as the mixture (IC50 = 0.63 ± 0.02 mg/mL) compared to the reference drug, which are insignificantly different (p > 0.05). A high and equipotent antidiabetic activity was observed for the mixture (IC50 = 0.75 ± 0.15 mg/mL) when compared to the standard drug, acarbose, which is about nine times higher than each EO alone. Furthermore, pharmacokinetic analysis provides some useful insights into designing new drugs with favorable drug likeness and safety profiles based on a C. carvi and C. sativum EO mixture. In summary, the results of this study revealed that the combination of these EOs may be recommended for further food, therapeutic, and pharmaceutical applications, and can be utilized as medicine to inhibit several diseases.


Assuntos
Acetilcolinesterase/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Carum/química , Coriandrum/química , Hipoglicemiantes/farmacologia , Óleos Voláteis/farmacologia , Antibacterianos/química , Antibacterianos/farmacocinética , Antioxidantes/química , Antioxidantes/farmacocinética , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Óleos Voláteis/química , Óleos Voláteis/farmacocinética , Sementes/química
9.
Microb Pathog ; 118: 74-80, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29522803

RESUMO

Antibacterial resistance is an increasingly serious threat to global public health. The search for new anti-infection agents from natural resources, with different mode of actions and competitive effects became a necessity. In this study, twenty height methicillin-resistant Staphylococcus aureus (MRSA) strains were investigated for their biofilm formation ability. Subsequently, the antibiofilm effects of Eucalyptus globulus essential oil and its main component 1,8-cineole, against MRSA, as well as their antiquorum sensing potential, were evaluated. Our results displayed the potent efficacy of both E. globulus essential oil and 1,8-cineole against the development of biofilms formed by the methicillin-resistant strains. Additionally, E. globulus essential oil showed more potent of anti-QS activity, even at a low concentration, when compared to 1,8-cineole. All these property of tested agents may pave the way to prevent the development of biofilm formation by MRSA and subsequently the spreading of nosocomial infection.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cicloexanóis/farmacologia , Eucalyptus/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Cicloexanóis/química , Eucaliptol , Testes de Sensibilidade Microbiana , Monoterpenos/química , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/farmacologia
10.
Molecules ; 23(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336602

RESUMO

The problem of antibiotic resistance among pathogens encourages searching for novel active molecules. The aim of the research was to assay the anti-quorum sensing (anti-QS) and antibiofilm potential of Melaleuca alternifolia essential oil and its main constituent, terpinen-4-ol, to prevent the infections due to methicillin-resistant Staphylococcus aureus strains as an alternate to antibiotics. The tea tree oil (TTO) was evaluated for its potential in inhibiting QS-dependent phenomena such as violacein production in Chromobacterium violaceum, swarming motility of Pseudomonas aeruginosa PAO1, and biofilm formation in MRSA strains on glass. The results showed that terpinen-4-ol was able to inhibit MRSA strain biofilm formation on the glass strips by 73.70%. TTO inhibited the violacein production at a mean inhibitory concentration (MIC) value of 0.048 mg/mL by 69.3%. At 100 µg/mL TTO and terpinen-4-ol exhibited inhibition in swarming motility of PAO1 by 33.33% and 25%, respectively. TTO revealed anti-QS and anti-biofilm activities at very low concentrations, but it could be further investigated for new molecules useful for the treatment of MRSA infections.


Assuntos
Chromobacterium/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Terpenos/farmacologia , Biofilmes/efeitos dos fármacos , Chromobacterium/patogenicidade , Humanos , Melaleuca/química , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Óleo de Melaleuca/farmacologia , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA