Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(39): e2208830119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122203

RESUMO

Recent developments in the area of resonant dielectric nanostructures have created attractive opportunities for concentrating and manipulating light at the nanoscale and the establishment of the new exciting field of all-dielectric nanophotonics. Transition metal dichalcogenides (TMDCs) with nanopatterned surfaces are especially promising for these tasks. Still, the fabrication of these structures requires sophisticated lithographic processes, drastically complicating application prospects. To bridge this gap and broaden the application scope of TMDC nanomaterials, we report here femtosecond laser-ablative fabrication of water-dispersed spherical TMDC (MoS2 and WS2) nanoparticles (NPs) of variable size (5 to 250 nm). Such NPs demonstrate exciting optical and electronic properties inherited from TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced excitonic response and high refractive index value, making possible a strong concentration of electromagnetic field in the NPs. Furthermore, such NPs offer additional tunability due to hybridization between the Mie and excitonic resonances. Such properties bring to life a number of nontrivial effects, including enhanced photoabsorption and photothermal conversion. As an illustration, we demonstrate that the NPs exhibit a very strong photothermal response, much exceeding that of conventional dielectric nanoresonators based on Si. Being in a mobile colloidal state and exhibiting superior optical properties compared to other dielectric resonant structures, the synthesized TMDC NPs offer opportunities for the development of next-generation nanophotonic and nanotheranostic platforms, including photothermal therapy and multimodal bioimaging.


Assuntos
Nanosferas , Medicina de Precisão , Refratometria , Molibdênio , Nanosferas/uso terapêutico , Medicina de Precisão/instrumentação , Água
2.
Sensors (Basel) ; 23(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37430866

RESUMO

Photodetectors that can operate over a wide range of temperatures, from cryogenic to elevated temperatures, are crucial for a variety of modern scientific fields, including aerospace, high-energy science, and astro-particle science. In this study, we investigate the temperature-dependent photodetection properties of titanium trisulfide (TiS3)- in order to develop high-performance photodetectors that can operate across a wide range of temperatures (77 K-543 K). We fabricate a solid-state photodetector using the dielectrophoresis technique, which demonstrates a quick response (response/recovery time ~0.093 s) and high performance over a wide range of temperatures. Specifically, the photodetector exhibits a very high photocurrent (6.95 × 10-5 A), photoresponsivity (1.624 × 108 A/W), quantum efficiency (3.3 × 108 A/W·nm), and detectivity (4.328 × 1015 Jones) for a 617 nm wavelength of light with a very weak intensity (~1.0 × 10-5 W/cm2). The developed photodetector also shows a very high device ON/OFF ratio (~32). Prior to fabrication, the TiS3 nanoribbons were synthesized using the chemical vapor technique and characterized according to their morphology, structure, stability, and electronic and optoelectronic properties; this was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and a UV-Visible-NIR spectrophotometer. We anticipate that this novel solid-state photodetector will have broad applications in modern optoelectronic devices.

3.
Nano Lett ; 17(11): 7152-7159, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29058440

RESUMO

Anapole states associated with the resonant suppression of electric-dipole scattering exhibit minimized extinction and maximized storage of electromagnetic energy inside a particle. Using numerical simulations, optical extinction spectroscopy, and amplitude-phase near-field mapping of silicon dielectric disks, we demonstrate high-order anapole states in the near-infrared wavelength range (900-1700 nm). We develop the procedure for unambiguously identifying anapole states by monitoring the normal component of the electric near-field and experimentally detect the first two anapole states as verified by far-field extinction spectroscopy and confirmed with the numerical simulations. We demonstrate that higher-order anapole states possess stronger energy concentration and narrower resonances, a remarkable feature that is advantageous for their applications in metasurfaces and nanophotonics components, such as nonlinear higher-harmonic generators and nanoscale lasers.

4.
Langmuir ; 33(24): 6062-6070, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28541708

RESUMO

Plasmonic sensor configurations utilizing localized plasmon resonances in silver nanostructures typically suffer from the rapid degradation of silver under ambient atmospheric conditions. In this work, we report on the fabrication and detailed characterization of ensembles of monocrystalline silver nanoparticles (NPs), which exhibit a long-term stability of optical properties under ambient conditions without any protective treatments. Ensembles with different densities (surface coverages) of size-selected NPs (mean diameters of 12.5 and 24 nm) on quartz substrates are fabricated using the cluster-beam technique and characterized by linear spectroscopy, two-photon-excited photoluminescence, surface-enhanced Raman scattering microscopy, and transmission electron, helium ion, and atomic force microscopies. It is found that the fabricated ensembles of monocrystalline silver NPs preserve their plasmonic properties (monitored with optical spectroscopy) and strong field enhancements (revealed by surface-enhanced Raman spectroscopy) at least 5 times longer as compared to chemically synthesized silver NPs with similar sizes. The obtained results are of high practical relevance for the further development of sensors, resonators, and metamaterials utilizing the plasmonic properties of silver NPs.

5.
Opt Express ; 24(15): 16743-51, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464128

RESUMO

Electromagnetic field enhancement (FE) effects occurring in thin gold films 3-12-nm are investigated with two-photon photoluminescence (TPL) and Raman scanning optical microscopies. The samples are characterized using scanning electron microscopy images and linear optical spectroscopy. TPL images exhibit a strong increase in the level of TPL signals for films thicknesses 3-8-nm, near the percolation threshold. For some thicknesses, TPL measurements reveal super-cubic dependences on the incident power. We ascribe this feature to the occurrence of very strongly localized and enhanced electromagnetic fields due to multiple light scattering in random nanostructures that might eventually lead to white-light generation. Raman images exhibit increasing Raman signals when decreasing the film thickness from 12 to 6-nm and decreasing signal for the 3-nm-film. This feature correlates with the TPL observations indicating that highest FE is to be expected near the percolation threshold.

6.
Nanotechnology ; 26(32): 322001, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26207013

RESUMO

Nanoparticles are widely used in various fields of science and technology as well as in everyday life. In particular, gold and silver nanoparticles display unique optical properties that render them extremely attractive for various applications. In this review, we focus on the use of noble metal nanoparticles as plasmonic nanosensors with extremely high sensitivity, even reaching single molecule detection. Sensors based on plasmon resonance shifts, as well as the use of surface-enhanced Raman scattering and surface-enhanced fluorescence, will be considered in this work.

7.
Small ; 10(15): 3065-71, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24789330

RESUMO

The translation of a technology from the laboratory into the real world should meet the demand of economic viability and operational simplicity. Inspired by recent advances in conductive ink pens for electronic devices on paper, we present a "pen-on-paper" approach for making surface enhanced Raman scattering (SERS) substrates. Through this approach, no professional training is required to create SERS arrays on paper using an ordinary fountain pen filled with plasmonic inks comprising metal nanoparticles of arbitrary shape and size. We demonstrate the use of plasmonic inks made of gold nanospheres, silver nanospheres and gold nanorods, to write SERS arrays that can be used with various excitation wavelengths. The strong SERS activity of these features allowed us to reach detection limits down to 10 attomoles of dye molecules in a sample volume of 10 µL, depending on the excitation wavelength, dye molecule and type of nanoparticles. Furthermore, such simple substrates were applied to pesticide detection down to 20 ppb. This universal approach offers portable, cost effective fabrication of efficient SERS substrates at the point of care. This approach should bring SERS closer to the real world through ink cartridges to be fixed to a pen to create plasmonic sensors at will.

8.
Heliyon ; 10(6): e27538, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509939

RESUMO

The plasmonic sensors based on silver nanoparticles are limited in application due to their relatively fast degradation in the ambient atmosphere. The technology of ion-beam modification for the creation of monocrystalline silver nanoparticles (NPs) with stable plasmonic properties will expand the application of silver nanostructures. In the present study, highly-stable monocrystalline NPs were formed on the basis of a thin silver film by low-energy ion irradiation. Combined with lithography, this technique allows the creation of nanoparticle ensembles in variant forms. The characterization of the nanoparticles formed by ion-beam modification showed long-term outstanding for Ag nanoparticles stability of their plasmonic properties due to their monocrystalline structure. According to optical spectroscopy data, the reliable plasmonic properties in the ambient atmosphere are preserved for up to 39 days. The mapping of crystal violet dye via surface-enhanced Raman spectroscopy (SERS) revealed a strong amplification factor sustaining at least thrice as long as the one of similarly sized polycrystalline silver NPs formed by annealing. The plasmonic properties sustain more than a month of storage in the ambient atmosphere. Thus, ion-beam modification of silver film makes it possible to fabricate NPs with stable plasmonic properties and form clusters of NPs for sensor technology and SERS applications.

9.
Nat Commun ; 15(1): 1552, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448442

RESUMO

Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matter interaction. Their orientation - an orthogonal Cartesian basis that diagonalizes the permittivity tensor, is often assumed stationary. Here, we show that the low-symmetry triclinic crystalline structure of van der Waals rhenium disulfide and rhenium diselenide is characterized by wandering principal optical axes in the space-wavelength domain with above π/2 degree of rotation for in-plane components. In turn, this leads to wavelength-switchable propagation directions of their waveguide modes. The physical origin of wandering principal optical axes is explained using a multi-exciton phenomenological model and ab initio calculations. We envision that the wandering principal optical axes of the investigated low-symmetry triclinic van der Waals crystals offer a platform for unexplored anisotropic phenomena and nanophotonic applications.

10.
Light Sci Appl ; 13(1): 68, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453886

RESUMO

The emergence of van der Waals (vdW) materials resulted in the discovery of their high optical, mechanical, and electronic anisotropic properties, immediately enabling countless novel phenomena and applications. Such success inspired an intensive search for the highest possible anisotropic properties among vdW materials. Furthermore, the identification of the most promising among the huge family of vdW materials is a challenging quest requiring innovative approaches. Here, we suggest an easy-to-use method for such a survey based on the crystallographic geometrical perspective of vdW materials followed by their optical characterization. Using our approach, we found As2S3 as a highly anisotropic vdW material. It demonstrates high in-plane optical anisotropy that is ~20% larger than for rutile and over two times as large as calcite, high refractive index, and transparency in the visible range, overcoming the century-long record set by rutile. Given these benefits, As2S3 opens a pathway towards next-generation nanophotonics as demonstrated by an ultrathin true zero-order quarter-wave plate that combines classical and the Fabry-Pérot optical phase accumulations. Hence, our approach provides an effective and easy-to-use method to find vdW materials with the utmost anisotropic properties.

11.
Nano Lett ; 12(7): 3749-55, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22703443

RESUMO

Strong resonant light scattering by individual spherical Si nanoparticles is experimentally demonstrated, revealing pronounced resonances associated with the excitation of magnetic and electric modes in these nanoparticles. It is shown that the low-frequency resonance corresponds to the magnetic dipole excitation. Due to high permittivity, the magnetic dipole resonance is observed in the visible spectral range for Si nanoparticles with diameters of ∼200 nm, thereby opening a way to the realization of isotropic optical metamaterials with strong magnetic responses in the visible region.

12.
ACS Sens ; 8(9): 3435-3447, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37698838

RESUMO

Real-time and high-performance monitoring of trace carbon dioxide (CO2) has become a necessity due to its substantial impact on the global climate, human health, indoor occupancy, and crop productivity. Two-dimensional materials such as transition metal dichalcogenides (TMDs) have gained significant interest in gas sensing applications owing to their intrinsically high surface-to-volume ratio. However, the research has been limited to prominent TMDs such as WS2 and MoS2. Specifically, the chemiresistive sensing performance of titanium disulfide (TiS2) has rarely been investigated. We present an electric-field-assisted TiS2 nanodisc assembly for the fabrication of a low-cost, low-power CO2 gas sensor based on charge transfer between physisorbed CO2 analyte molecules and TiS2 nanodiscs operating at room temperature. The physiochemical properties of the synthesized TiS2 nanodiscs were investigated via scanning electron microscopy (SEM), electron diffraction spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The fabricated sensor demonstrated an ultra-high sensor response of 60%, a fast response time of 37 s toward 500 ppm CO2 gas, and the lowest detection limit of 5 ppm under ambient conditions. The low adsorption energies and vdW interaction between CO2 molecules and TiS2 resulted in easy desorption, allowing the sensor to self-recover without the need for external stimuli, which is hardly been witnessed in other 2D material analogues. Furthermore, the sensor has excellent reproducibility and stability for successive analyte exposures, as well as excellent selectivity for CO2 over other interfering gases. This reported sensor based on 2D TMDs is the first of its type to integrate such a broad range of sensor characteristics (such as high sensor response and sensitivity, rapid response and recovery times, a high signal-to-noise ratio, and excellent selectivity at room temperature) into a single, revolutionary device for CO2 detection.


Assuntos
Dióxido de Carbono , Gases , Humanos , Reprodutibilidade dos Testes , Temperatura , Adsorção
13.
Small Methods ; 7(2): e2201379, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617683

RESUMO

Plasmonic tweezers are an emerging research topic because of their low input power and wide operating range from homogeneous particles to complex biological objects. But it is still challenging for plasmonic tweezers to trap or manipulate objects of tens of microns, especially in biological science. This study introduces a new 3D biocompatible plasmonic tweezer for single living cell manipulation in solution. The key design is a tapered tip whose three-layer surface structure consists of nanoprobe, gold nanofilm, and thermosensitive hydrogel, thiolated poly(N-isopropylacrylamide). Incident light excites the surface plasmon polaritons on gold film and generates heat to induce thermally driven phase transition of the thermosensitive hydrogel, which enables reversible binding between functionalized surface and cell membrane and avoids both thermal and mechanical stresses in the meanwhile. The 3D biocompatible plasmonic tweezer realizes selective capture, 3D pathway free transport, and position-controlled release of target cells, and it displays excellent biocompatibility, low energy consumption, and high operational flexibility.


Assuntos
Ouro , Pinças Ópticas , Ouro/química , Hidrogéis
14.
Nanomaterials (Basel) ; 13(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37110961

RESUMO

Ultrathin metal films are an essential platform for two-dimensional (2D) material compatible and flexible optoelectronics. Characterization of thin and ultrathin film-based devices requires a thorough consideration of the crystalline structure and local optical and electrical properties of the metal-2D material interface since they could be dramatically different from the bulk material. Recently, it was demonstrated that the growth of gold on the chemical vapor deposited monolayer MoS2 leads to a continuous metal film that preserves plasmonic optical response and conductivity even at thicknesses below 10 nm. Here, we examined the optical response and morphology of ultrathin gold films deposited on exfoliated MoS2 crystal flakes on the SiO2/Si substrate via scattering-type scanning near-field optical microscopy (s-SNOM). We demonstrate a direct relationship between the ability of thin film to support guided surface plasmon polaritons (SPP) and the s-SNOM signal intensity with a very high spatial resolution. Using this relationship, we observed the evolution of the structure of gold films grown on SiO2 and MoS2 with an increase in thickness. The continuous morphology and superior ability with respect to supporting SPPs of the ultrathin (≤10 nm) gold on MoS2 is further confirmed with scanning electron microscopy and direct observation of SPP fringes via s-SNOM. Our results establish s-SNOM as a tool for testing plasmonic films and motivate further theoretical research on the impact of the interplay between the guided modes and the local optical properties on the s-SNOM signal.

15.
Biosensors (Basel) ; 13(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36979587

RESUMO

Early-stage uric acid (UA) abnormality detection is crucial for a healthy human. With the evolution of nanoscience, metal oxide nanostructure-based sensors have become a potential candidate for health monitoring due to their low-cost, easy-to-handle, and portability. Herein, we demonstrate the synthesis of puffy balls-like cobalt oxide nanostructure using a hydrothermal method and utilize them to modify the working electrode for non-enzymatic electrochemical sensor fabrication. The non-enzymatic electrochemical sensor was utilized for UA determination using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The puffy balls-shaped cobalt oxide nanostructure-modified glassy carbon (GC) electrode exhibited excellent electro-catalytic activity during UA detection. Interestingly, when we compared the sensitivity of non-enzymatic electrochemical UA sensors, the DPV technique resulted in high sensitivity (2158 µA/mM.cm2) compared to the CV technique (sensitivity = 307 µA/mM.cm2). The developed non-enzymatic electrochemical UA sensor showed good selectivity, stability, reproducibility, and applicability in the human serum. Moreover, this study indicates that the puffy balls-shaped cobalt oxide nanostructure can be utilized as electrode material for designing (bio)sensors to detect a specific analyte.


Assuntos
Nanoestruturas , Ácido Úrico , Humanos , Reprodutibilidade dos Testes , Óxidos/química , Eletrodos , Técnicas Eletroquímicas/métodos
16.
ACS Omega ; 8(19): 16579-16586, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214699

RESUMO

Heterogeneous nanostructures composed of metastable tetragonal 1T-MoS2 and stable hexagonal 2H-MoS2 phases are highly promising for a wide range of applications, including catalysis and ion batteries, due to the high electrical conductivity and catalytic activity of the 1T phase. However, a controllable synthesis of stabilized 1T-MoS2 films over the wafer-scale area is challenging. In this work, a metal-organic chemical vapor deposition process allowing us to obtain ultrathin MoS2 films containing both 1T and 2H phases and control their ratio through rhenium doping was suggested. As a result, Mo1-xRexS2 films with a 1T-MoS2 fraction up to ≈30% were obtained, which were relatively stable under normal conditions for a long time. X-ray photoelectron spectroscopy and Raman spectroscopy also indicated that the 1T-MoS2 phase fraction increased with rhenium concentration increase saturating at Re concentrations above 5 at. %. Also, its concentration was found to significantly affect the film resistivity. Thus, the resistivity of the film containing approximately 30% of the 1T phase was about 130 times lower than that of the film without the 1T phase.

17.
Free Radic Biol Med ; 196: 133-144, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36649901

RESUMO

The balance between the mitochondrial respiratory chain activity and the cell's needs in ATP ensures optimal cellular function. Cytochrome c is an essential component of the electron transport chain (ETC), which regulates ETC activity, oxygen consumption, ATP synthesis and can initiate apoptosis. The impact of conformational changes in cytochrome c on its function is not understood for the lack of access to these changes in intact mitochondria. We have developed a novel sensor that uses unique properties of label-free surface-enhanced Raman spectroscopy (SERS) to identify conformational changes in heme of cytochrome c and to elucidate their role in functioning mitochondria. We have verified that molecule bond vibrations assessed by SERS are a reliable indicator of the heme conformation during changes in the inner mitochondrial membrane potential and ETC activity. We have demonstrated that cytochrome c heme reversibly switches between planar and ruffled conformations in response to the inner mitochondrial membrane potential (ΔΨ) and H+ concentration in the intermembrane space. This regulates the efficiency of the mitochondrial respiratory chain, thus, adjusting the mitochondrial respiration to the cell's consumption of ATP and the overall activity. We have found that under hypertensive conditions cytochrome c heme loses its sensitivity to ΔΨ that can affect the regulation of ETC activity. The ability of the proposed SERS-based sensor to track mitochondrial function opens broad perspectives in cell bioenergetics.


Assuntos
Citocromos c , Heme , Citocromos c/metabolismo , Heme/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
18.
Nanomaterials (Basel) ; 13(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177004

RESUMO

Materials with high optical constants are of paramount importance for efficient light manipulation in nanophotonics applications. Recent advances in materials science have revealed that van der Waals (vdW) materials have large optical responses owing to strong in-plane covalent bonding and weak out-of-plane vdW interactions. However, the optical constants of vdW materials depend on numerous factors, e.g., synthesis and transfer method. Here, we demonstrate that in a broad spectral range (290-3300 nm) the refractive index n and the extinction coefficient k of Bi2Se3 are almost independent of synthesis technology, with only a ~10% difference in n and k between synthesis approaches, unlike other vdW materials, such as MoS2, which has a ~60% difference between synthesis approaches. As a practical demonstration, we showed, using the examples of biosensors and therapeutic nanoparticles, that this slight difference in optical constants results in reproducible efficiency in Bi2Se3-based photonic devices.

19.
Opt Express ; 20(1): 534-46, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22274375

RESUMO

We present a new approach for making interconnected hemispherical shells by stripping Au from templates of anodized aluminum, where the metal thickness can be adjusted without affecting the outer radius of curvature, film roughness and the sharpness of the hemisphere contact areas. This provides increased understanding of the surface plasmon resonances (SPRs) observed for Film-On-Nanospheres (FONs) by decoupling these parameters, which are coupled in the case of FONs. Investigating the influence of the shell thicknesses on the spectral positions of SPRs for FONs involves a dielectric core with a fixed radius encased by a metal film with adjustable thickness. By performing linear reflection spectroscopy, we demonstrate a wide tunability of the SPR by tailoring the inner hemisphere diameter, while keeping the outer diameter fixed. Deposition of extra Au on top of thick, previously stripped hemispherical shells isolates optical response contributions from Au grain- and island-mediated roughness, and unsharpening contact areas in form of decreasing LSPR quality factor. Two-photon luminescence scanning optical microscopy of shells with different thicknesses, applying several different laser wavelengths, is exploited to map local electromagnetic hot spots and correlate the high field enhancements with the linear reflection spectroscopy measurements.


Assuntos
Ouro/química , Nanosferas/química , Nanosferas/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos , Luz , Espalhamento de Radiação
20.
Opt Express ; 20(1): 654-62, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22274389

RESUMO

Using two-photon luminescence (TPL) microscopy and local reflection spectroscopy we investigate electromagnetic field enhancement effects from a µm-sized composition of 450-nm-deep V-grooves milled by focused ion beam in a thick gold film and assembled to feature, within the same structure, individual V-grooves as well as one- and two-dimensional 300-nm-period arrays of, respectively, parallel and crossed V-grooves. We analyze TPL signal levels obtained at different spatial locations and with different combinations of excitation and detection polarizations, discovering that the TPL emitted from the V-grooves is polarized in the direction perpendicular to that of the V-grooves. This feature implies that the TPL occurs solely in the form of (p-polarized) surface plasmon modes and originates therefore from the very bottom of V-grooves, where no photonic modes exist. Implications of the results obtained to evaluation of local field enhancements using TPL microscopy, especially when investigating extended structures exhibiting different radiation channels, are discussed.


Assuntos
Medições Luminescentes/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA