RESUMO
Research background: Millet bran is a by-product rich in dietary fibre, micronutrients and bioactive compounds which are often deficient in a gluten-free diet. Previously, cryogenic grinding has been shown to improve the functionality of bran to some extent, although it offered limited benefits for bread making. This study aims to investigate the effects of adding proso millet bran depending on its particle size and xylanase pretreatment on the physicochemical, sensory and nutritional properties of gluten-free pan bread. Experimental approach: Coarse bran (d50=223 µm) was ground to medium size (d50=157 µm) using an ultracentrifugal mill or to superfine particles (d50=8 µm) using a cryomill. Millet bran presoaked in water (for 16 h at 55 °C) with or without the addition of fungal xylanase (10 U/g) replaced 10% of the rice flour in the control bread. Bread specific volume, crumb texture, colour and viscosity were measured instrumentally. Along with proximate composition, the content of soluble and insoluble fibre, total phenolic compounds (TPC) and phenolic acids as well as total and bioaccessible minerals of bread were assessed. Sensory analysis of the bread samples included a descriptive, hedonic and ranking test. Results and conclusions: Dietary fibre content (7.3-8.6 g/100 g) and TPC (42-57 mg/100 g) on dry mass basis of the bread loaves depended on bran particle size and xylanase pretreatment. The effect of xylanase pretreatment was most evident in the loaves with medium bran size in terms of higher content of fibre soluble in ethanol (45%) and free ferulic acid content (5%), improved bread volume (6%), crumb softness (16%) and elasticity (7%), but lower chewiness (15%) and viscosity (20-32%). Bread bitterness and dark colour were increased after adding medium-sized bran but its bitter aftertaste, crust crookedness, crumb hardness and graininess were reduced with xylanase pretreatment. Although bran addition impaired protein digestibility, it enriched the bread with iron (341%), magnesium (74%), copper (56%) and zinc (7.5%). Xylanase pretreatment of the bran resulted in the improved bioaccessibility of zinc and copper of the enriched bread compared to the control and bread without xylanase. Novelty and scientific contribution: Application of xylanase to medium sized bran obtained by ultracentrifugal grinding was more successful than its application to superfine bran obtained by the multistage cryogrinding as it resulted in more soluble fibre in gluten-free bread. Moreover, xylanase was proven beneficial in maintaining desirable bread sensory properties and mineral bioaccessibility.
RESUMO
RESEARCH BACKGROUND: Carob is widely cultivated Mediterranean plant, but its flour is scarcely used in bread making. Previous studies investigated the quality of wheat bread with added carob flour showing discrepant results. This study aims to investigate the fermentation performance, antioxidant activity, rheological behaviour and baking application of carob sourdough. EXPERIMENTAL APPROACH: Carob sourdough was fermented with Lactobacillus brevis or Lactobacillus fermentum combined with Saccharomyces cerevisiae for 24 h at 30 °C. At the end of sourdough fermentation, number of viable lactic acid bacteria and yeast cells, total titratable acidity, pH value, antioxidant activity, phenolics and sugar content were determined. Carob flour (12% flour mass fraction) or sourdough equivalent (22.5% dough mass fraction) was applied in making composite partially baked frozen bread. Dough rheology was monitored using a farinograph. Nutritive value, physical properties and sensory attributes of the rebaked bread samples were evaluated using a hedonic test. RESULTS AND CONCLUSIONS: By the end of fermentation, carob sourdough reached pH=4.2-4.5 and total acidity 9.9-12.3 mL of 0.1 M NaOH, sugar content on dry mass basis was reduced by 8 g/100 g, while total phenolics and antioxidant activity were increased up to 21%, depending on the starter culture. Addition of carob flour or sourdough to wheat dough resulted in firmer consistency, longer development time, and lower quality number. Regardless, bread with carob flour had significantly improved specific volume. Compared with common wheat bread, carob bread had increased dietary fibre content (46%), total phenolics (140-200%) and antioxidant activity (240-300%), higher shape, larger volume, reduced crumbliness, unchanged firmness and darker crumb colour. Consumer preference and overall acceptability scores of carob sour bread were comparable to those of wheat bread, falling into the category of 'liking very much'. NOVELTY AND SCIENTIFIC CONTRIBUTION: To our knowledge, this is the first study that proved the feasibility of carob sourdough fermentation using mixed starter cultures, where L. brevis together with S. cerevisiae was better adapted to the substrate than L. fermentum. The carob sourdough could be used as a natural ingredient for improvement of nutritive value and reduction of crumbliness of partially baked frozen bread.
RESUMO
Millet is an unexploited cereal with potential in the food industry due to its nutritional value and resistance to harsh climate conditions. Nutritious millet byproducts have a potential application in the development of functional cereal products, but require processing in order to improve their physical and nutritional quality. Therefore, we investigated high intensity ultrasound as a pretreatment to increase the amount of freely available bioactives from proso millet bran. We also analysed the effect of high intensity ultrasound on enzymatic browning, water retention and protein digestibility, which are crucial for the utilization in the bakery and pasta industry. A 15% millet bran suspension in water was treated with 400-W ultrasound probe for 5, 12.5 or 20 min, with the 60, 80 or 100% amplitude. High intensity ultrasound treatment with 80% amplitude for 12.5 min improved most significantly the nutritive value; the antioxidant activity measured by FRAP test increased by 15% (p<0.05), and total phenolic content by 16% (p<0.05). Still, the impact on the increase of water-soluble and ethanol-insoluble dietary fibre by 38% was evident after the treatment for 20 min at 100% amplitude. High intensity ultrasound treatment at 100% amplitude for 5 min caused the largest improvements in water retention and limited browning of the sample. High intensity ultrasound treatment activated polyphenol oxidase, regardless of the applied heating of the sample. Due to its ambiguous impact on proso millet bran characteristics, the treatment required an optimization, which showed that the optimal pretreatment of a 15% millet bran suspension in water is at 100% amplitude for 9.3 min.
RESUMO
Driven by the bakery industry urge to satisfy consumer demand for fresh, diverse and high quality bakery products, we investigated the influence of barley sourdough and vacuum cooling on shelf life quality of partially baked bread stored in modified atmosphere packaging at ambient conditions. Barley sourdough was fermented with Lactobacillus reuteri (DSM 20016, F275). Partially baked bread with sourdough was microbiologically acceptable during 30 days of storage, while bread without sourdough had detectable mould on the 30th day. Stored bread samples were rebaked after 1, 8, 15, 22 and 30 days to determine moisture content, physical and sensorial properties. Moisture loss (5%) was detected on the 15th day, after which it remained stable until the end of investigated storage period. Nevertheless, textural quality of stored bread continuously declined due to crumb firming. Bread flavour did not change during mould-free storage time. The principal component analysis identified major differences in the flavour of sour and control bread, also in crumb firmness and moisture content of samples. This study indicates the positive role of barley sourdough fermented with L. reuteri in improving crumb texture for at least 15 days, and ensuring mould- and bacteria-free partially baked bread for 30 days. Vacuum cooling combined with sourdough improved bread shape, porosity, and reduced sour taste, crust colouring and crumbliness. Hence, it can successfully extend shelf life quality of partially baked bread in modified atmosphere packaging.
RESUMO
The increasing demand for greater utilization of byproducts in the food industry has been driven by growing interest in environmental sustainability. This paper examines the market potential and consumer attitudes toward whole-grain and sustainable cookies made with food byproducts and edible films. Additionally, particular attention was given to evaluating levels of sustainability knowledge and nutritional awareness, willingness to purchase environmentally friendly cookies with food byproducts, and to appraise differences in answers between countries and generations. An online questionnaire was used to collect data from Croatian (n = 472), French (n = 166), and North Macedonian consumers (n = 119) aged between 18 and 62, predominantly women (82%) with higher education degrees. Results showed that even if chocolate-coated cookies remain very popular, North Macedonians prefer whole-grain and plain cookies, while the French prefer chocolate-coated cookies and Croats prefer both types of cookie. The majority of consumers (96%) were interested in purchasing environmentally friendly cookies. However, consumers' interest in purchasing cookies with food byproducts was generally low, which may be related to their limited knowledge of byproducts. In conclusion, there is market potential for whole-grain cookies with food byproducts, but brand, price, and consumer education may be critical to their success.
RESUMO
Betaine is a non-essential amino acid with proven functional properties and untapped potential for cereal food enrichment. While 3D printing represents a viable approach for manufacturing enriched cereal-based foods with novel shapes and textures, it is crucial to consider the impact of printing parameters and post-processing on the betaine content and properties of these products. The aim of this study was to investigate the influence of the infill level (20, 30 and 40%) of 3D-printed cuboid shapes and the post-processing techniques (drying oven, vacuum dryer, air fryer) of betaine-enriched oat-based snacks on the print quality, texture, and sensory properties, as well as the content of preserved betaine. The interaction of post-processing technique and infill level influenced the length deviation and texture properties, as well as the betaine content of snacks. Height stability was only influenced by post-processing technique. In general, oven-dried snacks showed the best dimensional stability, having the lowest width/length deformation (about 8%) at the infill level of 20%. Betaine was best preserved (19-31% loss) in snacks post-processed in a vacuum dryer (1281-1497 mg/g), followed by an air fryer and a drying oven, where betaine loss was in the range 28-55%. Air-fried snacks with 40% infill level had the highest values of instrumentally measured crunchiness (38.9 Nmm) as well as sensory test values for liking of texture (7.5), intensity of odor (6) and overall flavor (6). Overall, air frying proved to be a convenient and quick post-processing technique for 3D-printed snacks, but infill patterns for preserving betaine should be further explored. Vacuum drying could be used to preserve bioactive compounds, but efforts should be made to minimize its negative impact on the physical deformations of the 3D-printed products.
RESUMO
Since there are no products in the European market labelled as low-FODMAP (low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols), patients with irritable bowel syndrome and non-celiac wheat sensitivity often consume gluten-free products. These naturally contain little FODMAP, but have poorer sensory properties and lower nutritional value. This study aimed to develop sensory attractive crackers with high-fibre and low-FODMAP content. Various gluten-free flours (wholemeal buckwheat and millet, white maize), pumpkin seed meal, chia seeds, flax seeds, rice protein, sweet potato, sourdough, and spices were used to develop nine formulations. Using a nine-point hedonic scale and ranking test, four best-scored products were selected for which descriptive sensory analysis was performed and nutritional value and fructan content were determined. Crackers made from maize and millet flour mixtures (ratio 1:2.5) with sourdough and with chia or flax seed addition were rated highest for overall impression (8.2 and 7.0, respectively). Generally, high-fibre content, hardness, chewiness, dark colour, and bitterness lower the acceptability of crackers, but the addition of spices and sourdough can improve their acceptability and marketability. The crackers could be labelled as "gluten-free", "low-FODMAP" (<0.12 g/100 g), "naturally high-fibre" (7−10 g/100 g of which 17−23% are soluble), and "high in protein" (24−26 g/100 g).
RESUMO
Bran can enrich snacks with dietary fibre but contains fructans that trigger symptoms in people with irritable bowel syndrome (IBS). This study aimed to investigate the bioprocessing of wheat and amaranth bran for degrading fructans and its application (at 20% flour-based) in 3D-printed snacks. Bran was bioprocessed with Saccharomyces cerevisiae alone or combined with inulinase, Kluyveromyces marxianus, Limosilactobacillus fermentum, or commercial starter LV1 for 24 h. Fructans, fructose, glucose, and mannitol in the bran were analysed enzymatically. Dough rheology, snack printing precision, shrinkage in baking, texture, colour, and sensory attributes were determined. The fructan content of wheat bran was 2.64% dry weight, and in amaranth bran, it was 0.96% dry weight. Bioprocessing reduced fructan content (up to 93%) depending on the bran type and bioprocessing agent, while fructose and mannitol remained below the cut-off value for IBS patients. Bran bioprocessing increased the complex viscosity and yield stress of dough (by up to 43 and 183%, respectively) in addition to printing precision (by up to 13%), while it lessened shrinkage in baking (by 20-69%) and the hardness of the snacks (by 20%). The intensity of snack sensory attributes depended on the bran type and bioprocessing agent, but the liking ("neither like nor dislike") was similar between samples. In conclusion, snacks can be enriched with fibre while remaining low in fructans by applying bioprocessed wheat or amaranth bran and 3D printing.
RESUMO
Different lactic acid bacteria starters were used to prepare sourdough to make partially-baked frozen wholemeal wheat bread. The sourdough was prepared with a pure culture of Lactobacillus plantarum or with commercial starters containing Lactobacillus brevis combined with Saccharomyces cerevisiae var. chevalieri (LV4), Lactobacillus fermentum (PL1), or Lactobacillus fermentum with phytase (PL3). We determined the acetic and lactic acid concentrations in sourdough, bread chemical composition, total phenolics content and glycemic index (GI) in vivo. Depending on the starter, the lactic to acetic acid ratio in the sourdough was significantly different. The GI of control bread without sourdough (70) was significantly higher than that of bread containing sourdough prepared with LV4 starter (50), PL1 starter (56) or PL3 starter (56), but not from bread with L. plantarum sourdough (60). The addition of 10% sourdough with a lower molar ratio of lactic to acetic acid ( ≤ 4) and higher total phenolics content is preferable for generating bread with medium and low GI.
Assuntos
Ácido Acético/análise , Pão/análise , Microbiologia de Alimentos , Índice Glicêmico , Ácido Láctico/análise , Fenóis/análise , Adulto , Pão/microbiologia , Culinária , Feminino , Fermentação , Farinha , Manipulação de Alimentos/métodos , Tecnologia de Alimentos , Congelamento , Humanos , Lactobacillus/isolamento & purificação , Masculino , Saccharomyces cerevisiae/isolamento & purificação , Triticum , Adulto JovemRESUMO
In this study, we designed high fiber cookie recipe without using additives by means of extrusion-based 3D printing. We aimed to relate printing quality and cookie physical properties with dough rheology and dietary fiber content depending on the flour (oat, rye, rice, and carob flour) and fat type (olive oil or butter). The flour choice influenced all cookie quality parameters: baking loss, color, line height and width, and dietary fiber content. Results indicated that lower baking loss and better printing quality were obtained for cookie dough containing olive oil, which had higher viscosity and consistency coefficient compared with dough containing butter. Cookies with olive oil in which part of the oat flour was replaced with rye and carob flour were printed with high accuracy (≥98%), close to the ideal 3D shape. Overall, this study demonstrates the importance of selecting fat and particularly flour, as well as the extrusion rate on the quality and repeatability of 3D-printed cookies.
RESUMO
BACKGROUND: Bread can be a good source of nutrients as well as non-nutrient compounds. This study was designed to assess the effect of adding of sourdough and whey proteins to wholemeal (WM) bread produced by bake-off technology on chemical composition and bioavailability of proteins, calcium, phosphorus, magnesium and iron content in Wistar rats. MATERIAL AND METHODS: Wholemeal breads were baked with using conventional or bake off technology. In breads chemical composition, selected minerals content, amino acid composition were measured. Five week-old Wistar rats (n = 30, male), were randomly divided into fi ve groups and fed with modified AIN-93G diets containing experimental breads. In animal study the nutritional value of breads' proteins and concentration of selected minerals in serum, liver and femoral bone, were measured. RESULTS: The body weight gain, biological value (BV) and net protein utilization (NPU) were significantly higher in rats fed with partially baked frozen wholemeal (PBF WM) bread with sourdough and whey proteins. The level of magnesium was significantly lower in serum of animals fed with the diet containing PBF WM bread with sourdough and whey proteins in comparison to rodents fed with conventional WM bread with sourdough. The content of iron was significantly higher in liver of rats fed with PBF WM with sourdough bread in comparison to the groups fed with conventional WM and conventional WM with sourdough breads. CONCLUSIONS: Sourdough addition can be recommended in a production of whole wheat partially baked frozen bread but its use is further more beneficial if it is fermented with whey proteins.
Assuntos
Pão/análise , Qualidade dos Alimentos , Alimentos Fortificados/análise , Proteínas do Leite/análise , Triticum/química , Animais , Disponibilidade Biológica , Cálcio da Dieta/administração & dosagem , Cálcio da Dieta/farmacocinética , Dieta , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/farmacocinética , Fermentação , Farinha/análise , Manipulação de Alimentos , Ferro da Dieta/administração & dosagem , Ferro da Dieta/farmacocinética , Magnésio/administração & dosagem , Magnésio/farmacocinética , Masculino , Fósforo na Dieta/administração & dosagem , Fósforo na Dieta/farmacocinética , Ratos , Ratos Wistar , Proteínas do Soro do LeiteRESUMO
Whole grain cereals are an important source of bioavailable lignans, the group of compounds with potential anti-cancerogenic, antioxidant, anti-proliferative, pro-apoptotic, and antiangiogenic properties. The aim of this work was to develop a sensitive method for determination of wheat bran lignans. The analysis of lignans secoisolariciresinol, hydroxymatairesinol, lariciresinol, matairesinol, pinoresinol, syringaresinol is based on derivatization with pentafluoropropionic anhydride (PFPA) and gas chromatography-electron capture detection (GC-ECD), using styrene glycol as internal standard. To our knowledge, this is the first time that EC detection has been used for lignan analysis. The results show that the technique is reproducible and sensitive enough for detecting lignans in wheat at parts-per-billion (ppb) levels, except for hydroxymatairesinol. The method developed showed good recovery (85-105%) and precision (4-20%) for five types of lignans and thus represents a simpler and more affordable alternative to state-of-the-art wheat lignan liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis.