RESUMO
This work describes a novel method for converting bismuth triiodide (BiI3) microplates into bismuth oxyiodide (BiOI) nanoflakes under ultrasonic irradiation. To produce BiOI nanoflakes with a high yield and high purity, the conversion process was carefully adjusted. Rapid reaction kinetics and increased mass transfer are benefits of the ultrasonic-assisted approach that result in well-defined converted BiOI nanostructures with superior characteristics. The produced BiOI nanoflakes were examined utilizing a range of analytical methods, such as Transmission Electron Microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The progress in the ultrasonic conversion process with time was monitored through diffuse reflectance spectroscopy (DRS). The outcomes demonstrated the effective conversion of BiI3 microplates into crystalline, homogeneous, high-surface-area BiOI nanoflakes. Additionally, the degradation of organic dyes (methylene blue) under ultraviolet (UV) light irradiation was used to assess the photocatalytic efficacy of the produced BiOI nanoflakes. Because of their distinct morphology and electrical structure, the BiOI nanoflakes remarkably demonstrated remarkable photocatalytic activity, outperforming traditional photocatalysts. The ability of BiOI nanoflakes to effectively separate and utilize visible light photons makes them a viable option for environmental remediation applications. This work not only shows the promise of BiOI nanoflakes for sustainable photocatalytic applications but also demonstrates a simple and scalable approach to their manufacturing. The knowledge gathered from this work opens up new avenues for investigating ultrasonic-assisted techniques for creating sophisticated nanomaterials with customized characteristics for a range of technological uses.
Assuntos
Bismuto , Nanoestruturas , Bismuto/química , Catálise , Nanoestruturas/química , Iodetos/química , Raios Ultravioleta , Processos Fotoquímicos , Difração de Raios X/métodos , Azul de Metileno/química , Ultrassom/métodos , Ondas UltrassônicasRESUMO
This study investigates the piezoelectric and piezotronic properties of a novel composite material comprising polyvinylidene fluoride (PVDF) and antimony sulphoiodide (SbSI) nanowires. The material preparation method is detailed, showcasing its simplicity and reproducibility. The material's electrical resistivity, piezoelectric response, and energy-harvesting capabilities are systematically analyzed under various deflection conditions and excitation frequencies. The piezoelectric response is characterized by the generation of charge carriers in the material due to mechanical strain, resulting in voltage output. The fundamental phenomena of charge generation, along with their influence on the material's resistivity, are proposed. Dynamic strain testing reveals the composite's potential as a piezoelectric nanogenerator (PENG), converting mechanical energy into electrical energy. Comparative analyses highlight the composite's power density advantages, thereby demonstrating its potential for energy-harvesting applications. This research provides insights into the interplay between piezoelectric and piezotronic phenomena in nanocomposites and their applicability in energy-harvesting devices.
RESUMO
The dynamic development of flexible wearable electronics creates new possibilities for the production and use of new types of sensors. Recently, polymer nanocomposites have gained great popularity in the fabrication of sensors. They possess both the mechanical advantages of polymers and the functional properties of nanomaterials. The main drawback of such systems is the complexity of their manufacturing. This article presents, for the first time, fabrication of an antimony sulfoiodide (SbSI) and polyurethane (PU) nanocomposite and its application as a piezoelectric nanogenerator for strain detection. The SbSI/PU nanocomposite was prepared using simple, fast, and efficient technology. It allowed the obtainment of a high amount of material without the need to apply complex chemical methods or material processing. The SbSI/PU nanocomposite exhibited high flexibility and durability. The microstructure and chemical composition of the prepared material were investigated using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. These studies revealed a lack of defects in the material structure and relatively low agglomeration of nanowires. The piezoelectric response of SbSI/PU nanocomposite was measured by pressing the sample with a pneumatic actuator at different excitation frequencies. It is proposed that the developed nanocomposite can be introduced into the shoe sole in order to harvest energy from human body movement.
Assuntos
Nanocompostos , Poliuretanos , Humanos , Poliuretanos/química , Microscopia Eletrônica de Varredura , Nanocompostos/química , Fenômenos FísicosRESUMO
Degradation of polymer composites is a significant problem in many engineering aspects. Due to the interaction of various degradation factors during the exploitation of composites, a synergistic effect of destruction is observed. The article describes the phenomena occurring in glass fiber reinforced polyester laminates under the influence of ultraviolet radiation (UV) in an aquatic environment. The laminates were exposed to UV-A, UV-B and UV-C radiation for 1000 h in free-air and underwater conditions. During the test, the materials were immersed at stable depth of 1 mm and 10 mm, respectively. The three-point bending tests performed on the samples after being exposed to UV showed an increase in the flexural strength of the composites. Simultaneously, degradation of the outer surface layer was observed. The degradation removed the thin resin film from the surface which resulted in a direct exposure of the reinforcing fibers to the environment. The transformations taking place in the deeper layers of the composite increased the mechanical strength due to the additional cross-linking reactions excited by the energy arising from the radiation. Moreover, the formation of polymer structures from free styrene remaining after the technological process and the occurrence of free radical reactions as a result of the cage effect was also observed.
RESUMO
The underwater ultrasound power measurement has become necessary due to the rapid development of sonochemistry and sonocatalysis. This article presents construction of novel triboelectric nanogenerator (TENG) and its application for a detection of ultrasonic waves in water. The device was 3D printed using widely available and cost-effective materials. TENG consisted of the device housing and movable polymer pellets confined between flat electrodes. The device housing and pellets were 3D printed via stereolithography (SLA) and fused deposition modelling (FDM) methods, respectively. The pellets moved periodically driven by the ultrasonic waves leading to generation of an alternating voltage signal. The electric response of TENG was calibrated using a commercially available ultrasonic power sensor. The open-circuit voltage output of TENG was registered in different sections of the ultrasonic bath in order to determine the distribution of the acoustic power. TENG electric responses were analyzed by applying the fast Fourier transform (FFT) and fitting the theoretical dependence to experimental data. The main peaks in the frequency spectra of the voltage waveforms corresponded to the fundamental excitation frequency of the ultrasonic bath. TENG device, presented in this paper, can be successfully applied as a self-powered sensor for detection of ultrasonic waves. It enables precise control of the sonochemical process and reduction of power losses of the ultrasonic reactor. 3D printing technology has been confirmed to be fast, easy, and scalable method of fabrication of the ultrasonic sensors.
RESUMO
The nanorods of bismuth sulfoiodide (BiSI) were synthesized at relatively low temperature (393 K) through a wet chemical method. The crystalline one-dimensional (1D) structure of the BiSI nanorods was confirmed using high resolution transmission microscopy (HRTEM). The morphology and chemical composition of the material were examined by applying scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The average diameter of 126(3) nm and length of 1.9(1) µm of the BiSI nanorods were determined. X-ray diffraction (XRD) revealed that prepared material consists of a major orthorhombic BiSI phase (87%) and a minor amount of hexagonal Bi13S18I2 phase (13%) with no presence of other residual phases. The direct energy band gap of 1.67(1) eV was determined for BiSI film using diffuse reflectance spectroscopy (DRS). Two types of photodetectors were constructed from BiSI nanorods. The first one was traditional photoconductive device based on BiSI film on stiff glass substrate equipped with Au electrodes. An influence of light intensity on photocurrent response to monochromatic light (λ = 488 nm) illumination was studied at a constant bias voltage. The novel flexible photo-chargeable device was the second type of prepared photodetectors. It consisted of BiSI film and gel electrolyte layer sandwiched between polyethylene terephthalate (PET) substrates coated with indium tin oxide (ITO) electrodes. The flexible self-powered BiSI photodetector exhibited open-circuit photovoltage of 68 mV and short-circuit photocurrent density of 0.11 nA/cm2 under light illumination with intensity of 0.127 W/cm2. These results confirmed high potential of BiSI nanorods for use in self-powered photodetectors and photo-chargeable capacitors.
RESUMO
Three-dimensional (3D) bioprinting technology has attracted a great deal of interest because it can be easily adapted to many industries and research sectors, such as biomedical, manufacturing, education, and engineering. Specifically, 3D bioprinting has provided significant advances in the medical industry, since such technology has led to significant breakthroughs in the synthesis of biomaterials, cells, and accompanying elements to produce composite living tissues. 3D bioprinting technology could lead to the immense capability of replacing damaged or injured tissues or organs with newly dispensed cell biomaterials and functional tissues. Several types of bioprinting technology and different bio-inks can be used to replicate cells and generate supporting units as complex 3D living tissues. Bioprinting techniques have undergone great advancements in the field of regenerative medicine to provide 3D printed models for numerous artificial organs and transplantable tissues. This review paper aims to provide an overview of 3D-bioprinting technologies by elucidating the current advancements, recent progress, opportunities, and applications in this field. It highlights the most recent advancements in 3D-bioprinting technology, particularly in the area of artificial organ development and cancer research. Additionally, the paper speculates on the future progress in 3D-bioprinting as a versatile foundation for several biomedical applications.
Assuntos
Órgãos Artificiais , Bioimpressão , Materiais Biocompatíveis , Bioimpressão/métodos , Impressão Tridimensional , Tecnologia , Engenharia Tecidual/métodosRESUMO
The article discusses the influence of the post-process on the mechanical properties of elements produced with the use of the mask stereolithography (mSLA) method. Printed samples were subjected to the following post-process steps: Washing and post-curing, at various times. Then, static tensile and static bending tests were carried out, as well as Shore D hardness measurements for the inner and surface part of the sample, as well as profilographometric analysis of the surface. The post-curing time has been found to strongly affect the tensile and bending strength of printouts, and to improve their surface quality. Washing has an ambiguous effect on the strength of the printouts, but, in the end, it was found that extended washing slightly reduces the strength. Washing significantly affects the quality of the printout surface. A washing time that is too short results in a surface that strongly resembles the printing process, with high roughness. Increasing the washing time to 10 min lowers the roughness by one order of magnitude. Post-curing has also been shown to be beneficial for the cured sample with the application of shielding water. This approach results in an improvement in the flexural strength of the printouts. In general, the obtained research results indicate that, for printouts with cross-sectional dimensions of several mm, the optimal washing time is no more than 10 min and the post-curing time is at least 30 min.