Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 569(7754): 53-58, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043730

RESUMO

Nuclear magic numbers correspond to fully occupied energy shells of protons or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. Although the sequence of magic numbers is well established for stable nuclei, experimental evidence has revealed modifications for nuclei with a large asymmetry between proton and neutron numbers. Here we provide a spectroscopic study of the doubly magic nucleus 78Ni, which contains fourteen neutrons more than the heaviest stable nickel isotope. We provide direct evidence of its doubly magic nature, which is also predicted by ab initio calculations based on chiral effective-field theory interactions and the quasi-particle random-phase approximation. Our results also indicate the breakdown of the neutron magic number 50 and proton magic number 28 beyond this stronghold, caused by a competing deformed structure. State-of-the-art phenomenological shell-model calculations reproduce this shape coexistence, predicting a rapid transition from spherical to deformed ground states, with 78Ni as the turning point.

2.
Phys Rev Lett ; 132(22): 222501, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877923

RESUMO

The known I^{π}=8_{1}^{+}, E_{x}=2129-keV isomer in the semimagic nucleus ^{130}Cd_{82} was populated in the projectile fission of a ^{238}U beam at the Radioactive Isotope Beam Factory at RIKEN. The high counting statistics of the accumulated data allowed us to determine the excitation energy, E_{x}=2001.2(7) keV, and half-life, T_{1/2}=57(3) ns, of the I^{π}=6_{1}^{+} state based on γγ coincidence information. Furthermore, the half-life of the 8_{1}^{+} state, T_{1/2}=224(4) ns, was remeasured with high precision. The new experimental information, combined with available data for ^{134}Sn and large-scale shell model calculations, allowed us to extract proton and neutron effective charges for ^{132}Sn, a doubly magic nucleus far-off stability. A comparison to analogous information for ^{100}Sn provides first reliable information regarding the isospin dependence of the isoscalar and isovector effective charges in heavy nuclei.

3.
Phys Rev Lett ; 133(8): 082501, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39241734

RESUMO

The neutron-rich unbound fluorine isotope ^{30}F_{21} has been observed for the first time by measuring its neutron decay at the SAMURAI spectrometer (RIBF, RIKEN) in the quasifree proton knockout reaction of ^{31}Ne nuclei at 235 MeV/nucleon. The mass and thus one-neutron-separation energy of ^{30}F has been determined to be S_{n}=-472±58(stat)±33(sys) keV from the measurement of its invariant-mass spectrum. The absence of a sharp drop in S_{n}(^{30}F) shows that the "magic" N=20 shell gap is not restored close to ^{28}O, which is in agreement with our shell-model calculations that predict a near degeneracy between the neutron d and fp orbitals, with the 1p_{3/2} and 1p_{1/2} orbitals becoming more bound than the 0f_{7/2} one. This degeneracy and reordering of orbitals has two potential consequences: ^{28}O behaves like a strongly superfluid nucleus with neutron pairs scattering across shells, and both ^{29,31}F appear to be good two-neutron halo-nucleus candidates.

4.
Phys Rev Lett ; 131(22): 222503, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101393

RESUMO

Isomers close to doubly magic _{28}^{78}Ni_{50} provide essential information on the shell evolution and shape coexistence near the Z=28 and N=50 double shell closure. We report the excitation energy measurement of the 1/2^{+} isomer in _{30}^{79}Zn_{49} through independent high-precision mass measurements with the JYFLTRAP double Penning trap and with the ISOLTRAP multi-reflection time-of-flight mass spectrometer. We unambiguously place the 1/2^{+} isomer at 942(10) keV, slightly below the 5/2^{+} state at 983(3) keV. With the use of state-of-the-art shell-model diagonalizations, complemented with discrete nonorthogonal shell-model calculations which are used here for the first time to interpret shape coexistence, we find low-lying deformed intruder states, similar to other N=49 isotones. The 1/2^{+} isomer is interpreted as the bandhead of a low-lying deformed structure akin to a predicted low-lying deformed band in ^{80}Zn, and points to shape coexistence in ^{79,80}Zn similar to the one observed in ^{78}Ni. The results make a strong case for confirming the claim of shape coexistence in this key region of the nuclear chart.

5.
Phys Rev Lett ; 130(12): 122502, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027859

RESUMO

The excited states of N=44 ^{74}Zn were investigated via γ-ray spectroscopy following ^{74}Cu ß decay. By exploiting γ-γ angular correlation analysis, the 2_{2}^{+}, 3_{1}^{+}, 0_{2}^{+}, and 2_{3}^{+} states in ^{74}Zn were firmly established. The γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+}, 3_{1}^{+}, and 2_{3}^{+} states were measured, allowing for the extraction of relative B(E2) values. In particular, the 2_{3}^{+}→0_{2}^{+} and 2_{3}^{+}→4_{1}^{+} transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are discussed in terms of underlying shapes, as well as the role of neutron excitations across the N=40 gap. Enhanced axial shape asymmetry (triaxiality) is suggested to characterize ^{74}Zn in its ground state. Furthermore, an excited K=0 band with a significantly larger softness in its shape is identified. A shore of the N=40 "island of inversion" appears to manifest above Z=26, previously thought as its northern limit in the chart of the nuclides.

6.
Phys Rev Lett ; 129(26): 262501, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36608181

RESUMO

The one-neutron knockout from ^{52}Ca in inverse kinematics onto a proton target was performed at ∼230 MeV/nucleon combined with prompt γ spectroscopy. Exclusive quasifree scattering cross sections to bound states in ^{51}Ca and the momentum distributions corresponding to the removal of 1f_{7/2} and 2p_{3/2} neutrons were measured. The cross sections, interpreted within the distorted-wave impulse approximation reaction framework, are consistent with a shell closure at the neutron number N=32, found as strong as at N=28 and N=34 in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron 1f_{7/2} and 2p_{3/2} orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the 2p_{3/2} orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.

7.
Phys Rev Lett ; 125(17): 172501, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156683

RESUMO

The ^{80}Ge structure was investigated in a high-statistics ß-decay experiment of ^{80}Ga using the GRIFFIN spectrometer at TRIUMF-ISAC through γ, ß-e, e-γ, and γ-γ spectroscopy. No evidence was found for the recently reported 0_{2}^{+} 639-keV level suggested as evidence for low-energy shape coexistence in ^{80}Ge. Large-scale shell model calculations performed in ^{78,80,82}Ge place the 0_{2}^{+} level in ^{80}Ge at 2 MeV. The new experimental evidence combined with shell model predictions indicate that low-energy shape coexistence is not present in ^{80}Ge.

8.
Phys Rev Lett ; 124(15): 152502, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357034

RESUMO

Detailed spectroscopy of the neutron-unbound nucleus ^{28}F has been performed for the first time following proton/neutron removal from ^{29}Ne/^{29}F beams at energies around 230 MeV/nucleon. The invariant-mass spectra were reconstructed for both the ^{27}F^{(*)}+n and ^{26}F^{(*)}+2n coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the ^{28}F ground state, with S_{n}(^{28}F)=-199(6) keV, while analysis of the 2n decay channel allowed a considerably improved S_{n}(^{27}F)=1620(60) keV to be deduced. Comparison with shell-model predictions and eikonal-model reaction calculations have allowed spin-parity assignments to be proposed for some of the lower-lying levels of ^{28}F. Importantly, in the case of the ground state, the reconstructed ^{27}F+n momentum distribution following neutron removal from ^{29}F indicates that it arises mainly from the 1p_{3/2} neutron intruder configuration. This demonstrates that the island of inversion around N=20 includes ^{28}F, and most probably ^{29}F, and suggests that ^{28}O is not doubly magic.

9.
Phys Rev Lett ; 121(25): 252501, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608829

RESUMO

The first 2^{+} and 3^{-} states of the doubly magic nucleus ^{132}Sn are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The ^{132}Sn ions are accelerated to an energy of 5.49 MeV/nucleon and impinged on a ^{206}Pb target. Deexciting γ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions 0_{g.s.}^{+}→2_{1}^{+}, 0_{g.s.}^{+}→3_{1}^{-}, and 2_{1}^{+}→3_{1}^{-} in ^{132}Sn. The results on these states provide crucial information on cross-shell configurations which are determined within large-scale shell-model and Monte Carlo shell-model calculations as well as from random-phase approximation and relativistic random-phase approximation. The locally enhanced B(E2;0_{g.s.}^{+}→2_{1}^{+}) strength is consistent with the microscopic description of the structure of the respective states within all theoretical approaches. The presented results of experiment and theory can be considered to be the first direct verification of the sphericity and double magicity of ^{132}Sn.

10.
Nature ; 486(7403): 341-5, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22722192

RESUMO

The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During ß(+)-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of (100)Sn, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the ß-decay of (100)Sn, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow-Teller strength so far measured in allowed nuclear ß-decay, establishing the 'superallowed' nature of this Gamow-Teller transition. The large strength and the low-energy states in the daughter nucleus, (100)In, are well reproduced by modern, large-scale shell model calculations.

11.
Phys Rev Lett ; 119(19): 192502, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219497

RESUMO

The masses of the neutron-rich copper isotopes ^{75-79}Cu are determined using the precision mass spectrometer ISOLTRAP at the CERN-ISOLDE facility. The trend from the new data differs significantly from that of previous results, offering a first accurate view of the mass surface adjacent to the Z=28, N=50 nuclide ^{78}Ni and supporting a doubly magic character. The new masses compare very well with large-scale shell-model calculations that predict shape coexistence in a doubly magic ^{78}Ni and a new island of inversion for Z<28. A coherent picture of this important exotic region begins to emerge where excitations across Z=28 and N=50 form a delicate equilibrium with a spherical mean field.

12.
Phys Rev Lett ; 117(27): 272501, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28084779

RESUMO

Large-scale shell-model calculations predict that the region of deformation which comprises the heaviest chromium and iron isotopes at and beyond N=40 will merge with a new one at N=50 in an astonishing parallel to the N=20 and N=28 case in the neon and magnesium isotopes. We propose a valence space including the full pf shell for the protons and the full sdg shell for the neutrons, which represents a comeback of the the harmonic oscillator shells in the very neutron- rich regime. The onset of deformation is understood in the framework of the algebraic SU(3)-like structures linked to quadrupole dominance. Our calculations preserve the doubly magic nature of the ground state of ^{78}Ni, which, however, exhibits a well-deformed prolate band at low excitation energy, providing a striking example of shape coexistence far from stability. This new IOI adds to the four well-documented ones at N=8, 20, 28, and 40.

13.
Phys Rev Lett ; 117(6): 062501, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27541463

RESUMO

Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∼40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time.

14.
Phys Rev Lett ; 115(19): 192501, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588374

RESUMO

We report on the measurement of the first 2(+) and 4(+) states of (66)Cr and (70,72)Fe via in-beam γ-ray spectroscopy. The nuclei of interest were produced by (p,2p) reactions at incident energies of 260 MeV/nucleon. The experiment was performed at the Radioactive Isotope Beam Factory, RIKEN, using the DALI 2γ-ray detector array and the novel MINOS device, a thick liquid hydrogen target combined with a vertex tracker. A low-energy plateau of 2(1)(+) and 4(1)(+) energies as a function of the neutron number was observed for N≥38 and N≥40 for even-even Cr and Fe isotopes, respectively. State-of-the-art shell model calculations with a modified Lenzi-Nowacki-Poves-Sieja (LNPS) interaction in the pfg(9/2)d(5/2) valence space reproduce the observations. Interpretation within the shell model shows an extension of the island of inversion at N=40 for more neutron-rich isotopes towards N=50.

15.
Phys Rev Lett ; 113(5): 052502, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126913

RESUMO

A marked difference in the nuclear charge radius was observed between the I^{π}=3^{+} ground state and the I^{π}=0^{+} isomer of ^{38}K and is qualitatively explained using an intuitive picture of proton-neutron pairing. In a high-precision measurement of the isomer shift using bunched-beam collinear laser spectroscopy at CERN-ISOLDE, a change in the mean-square charge radius of ⟨r_{c}^{2}⟩(^{38}K^{m})-⟨r_{c}^{2}⟩(^{38}K^{g})=0.100(6) fm^{2} was obtained. This is an order of magnitude more accurate than the result of a previous indirect measurement from which it was concluded that both long-lived states in ^{38}K have similar charge radii. Our observation leads to a substantially different understanding since the difference in charge radius is, moreover, opposite in sign to previously reported theoretical predictions. It is demonstrated that the observed isomer shift can be reproduced by large-scale shell-model calculations including proton and neutron excitations across the N,Z=20 shell gaps, confirming the significance of cross-shell correlations in the region of ^{40}Ca.

16.
Phys Rev Lett ; 112(4): 042502, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580444

RESUMO

Energies and spectroscopic factors of the first 7/2-, 3/2-, 1/2-, and 5/2- states in the (35)Si21 nucleus were determined by means of the (d, p) transfer reaction in inverse kinematics at GANIL using the MUST2 and EXOGAM detectors. By comparing the spectroscopic information on the Si35 and S37 isotones, a reduction of the p3/2-p1/2 spin-orbit splitting by about 25% is proposed, while the f7/2-f5/2 spin-orbit splitting seems to remain constant. These features, derived after having unfolded nuclear correlations using shell model calculations, have been attributed to the properties of the two-body spin-orbit interaction, the amplitude of which is derived for the first time in an atomic nucleus. The present results, remarkably well reproduced by using several realistic nucleon-nucleon forces, provide a unique touchstone for the modeling of the spin-orbit interaction in atomic nuclei.

17.
Phys Rev Lett ; 112(11): 112503, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702356

RESUMO

Excited states in the neutron-rich N = 38, 36 nuclei (60)Ti and (58)Ti were populated in nucleon-removal reactions from (61)V projectiles at 90 MeV/nucleon. The γ-ray transitions from such states in these Ti isotopes were detected with the advanced γ-ray tracking array GRETINA and were corrected event by event for large Doppler shifts (v/c ∼ 0.4) using the γ-ray interaction points deduced from online signal decomposition. The new data indicate that a steep decrease in quadrupole collectivity occurs when moving from neutron-rich N = 36, 38 Fe and Cr toward the Ti and Ca isotones. In fact, (58,60)Ti provide some of the most neutron-rich benchmarks accessible today for calculations attempting to determine the structure of the potentially doubly magic nucleus (60)Ca.

18.
Phys Rev Lett ; 113(13): 132502, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302883

RESUMO

Delayed γ-ray cascades, originating from the decay of (6⁺) isomeric states, in the very neutron-rich, semimagic isotopes (136,138)Sn have been observed following the projectile fission of a ²³8U beam at RIBF, RIKEN. The wave functions of these isomeric states are proposed to be predominantly a fully aligned pair of f(7/2) neutrons. Shell-model calculations, performed using a realistic effective interaction, reproduce well the energies of the excited states of these nuclei and the measured transition rates, with the exception of the B(E2;6⁺→4⁺) rate of ¹³6Sn, which deviates from a simple seniority scheme. Empirically reducing the νf(7/2)(2) orbit matrix elements produces a 41⁺ state with almost equal seniority 2 and 4 components, correctly reproducing the experimental B(E2;6⁺→4⁺) rate of ¹³6Sn. These data provide a key benchmark for shell-model interactions far from stability.

19.
Phys Rev Lett ; 110(24): 242701, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25165918

RESUMO

Intermediate-energy Coulomb excitation measurements are performed on the N ≥ 40 neutron-rich nuclei (66,68)Fe and (64)Cr. The reduced transition matrix elements providing a direct measure of the quadrupole collectivity B(E2;2(1)(+) → 0(1)(+)) are determined for the first time in (68)Fe(42) and (64)Cr(40) and confirm a previous recoil distance method lifetime measurement in (66)Fe(40). The results are compared to state-of-the-art large-scale shell-model calculations within the full fpgd neutron orbital model space using the Lenzi-Nowacki-Poves-Sieja effective interaction and confirm the results of the calculations that show these nuclei are well deformed.

20.
Phys Rev Lett ; 110(17): 172501, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679711

RESUMO

A measurement of the reduced transition probability for the excitation of the ground state to the first 2+ state in 104Sn has been performed using relativistic Coulomb excitation at GSI. 104Sn is the lightest isotope in the Sn chain for which this quantity has been measured. The result is a key point in the discussion of the evolution of nuclear structure in the proximity of the doubly magic nucleus 100Sn. The value B(E2; 0+ → 2+) = 0.10(4) e2b2 is significantly lower than earlier results for 106Sn and heavier isotopes. The result is well reproduced by shell model predictions and therefore indicates a robust N = Z = 50 shell closure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA