Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant J ; 115(3): 788-802, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37114596

RESUMO

The Arabidopsis ERECTA family (ERf) of leucine-rich repeat receptor-like kinases (LRR-RLKs) comprising ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERECTA-LIKE 2 (ERL2) controls epidermal patterning, inflorescence architecture, and stomata development and patterning. These proteins are reported to be plasma membrane associated. Here we show that the er/erl1/erl2 mutant exhibits impaired gibberellin (GA) biosynthesis and perception alongside broad transcriptional changes. The ERf kinase domains were found to localize to the nucleus where they interact with the SWI3B subunit of the SWI/SNF chromatin remodeling complex (CRCs). The er/erl1/erl2 mutant exhibits reduced SWI3B protein level and affected nucleosomal chromatin structure. Similar to swi3c and brm plants with inactivated subunits of SWI/SNF CRCs, it also does not accumulate DELLA RGA and GAI proteins. The ER kinase phosphorylates SWI3B in vitro, and the inactivation of all ERf proteins leads to the decreased phosphorylation of SWI3B protein in vivo. The identified correlation between DELLA overaccumulation and SWI3B proteasomal degradation, and the physical interaction of SWI3B with DELLA proteins indicate an important role of SWI3B-containing SWI/SNF CRCs in gibberellin signaling. Co-localization of ER and SWI3B on GID1 (GIBBERELLIN INSENSITIVE DWARF 1) DELLA target gene promoter regions and abolished SWI3B binding to GID1 promoters in er/erl1/erl2 plants supports the conclusion that ERf-SWI/SNF CRC interaction is important for transcriptional control of GA receptors. Thus, the involvement of ERf proteins in the transcriptional control of gene expression, and observed similar features for human HER2 (epidermal growth family receptor member), indicate an exciting target for further studies of evolutionarily conserved non-canonical functions of eukaryotic membrane receptors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Giberelinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética
2.
Neurobiol Dis ; 178: 106006, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682503

RESUMO

Many fundamental questions on alcohol use disorder (AUD) are frequently difficult to address by examining a single brain structure, but should be viewed from the whole brain perspective. c-Fos is a marker of neuronal activation. Global brain c-Fos profiling in rodents represents a promising platform to study brain functional networks rearrangements in AUD. We used a mouse model of alcohol drinking in IntelliCage. We trained mice to voluntarily drink alcohol, next subjected them to withdrawal and alcohol reexposure. We have developed a dedicated image computational workflow to identify c-Fos-positive cells in three-dimensional images obtained after whole-brain optical clearing and imaging in the light-sheet microscope. We provide a complete list of 169 brain structures with annotated c-Fos expression. We analyzed functional networks, brain modularity and engram index. Brain c-Fos levels in animals reexposed to alcohol were different from both control and binge drinking animals. Structures involved in reward processing, decision making and characteristic for addictive behaviors, such as precommissural nucleus, nucleus Raphe, parts of colliculus and tecta stood out particularly. Alcohol reexposure leads to a massive change of brain modularity including a formation of numerous smaller functional modules grouping structures involved in addiction development. Binge drinking can lead to substantial functional remodeling in the brain. We provide a list of structures that can be used as a target in pharmacotherapy but also point to the networks and modules that can hold therapeutic potential demonstrated by a clinical trial in patients.


Assuntos
Alcoolismo , Consumo Excessivo de Bebidas Alcoólicas , Camundongos , Animais , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Encéfalo/metabolismo , Etanol , Consumo de Bebidas Alcoólicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
3.
Addict Biol ; 28(7): e13285, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37369127

RESUMO

Alcohol dependence is characterized by the abnormal release of dopamine in the brain reward-related areas. Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that negatively regulates dopamine neurotransmission and thus is a promising target in the treatment of drug addiction. However, the role of TAAR1 in the regulation of alcohol abuse remains understudied. Here, we assessed the effect of TAAR1 activation on alcohol drinking behaviours of C57Bl/6J female mice housed in IntelliCages. The animals were administered with either vehicle or TAAR1 full selective agonist, RO5256390, and tested for alcohol consumption, alcohol preference and motivation for alcohol seeking. We found that mice with the highest preference for alcohol (high drinkers) in the RO5256390 group consumed less alcohol and had lower alcohol preference in comparison with high drinkers in the vehicle group, during 20 h of free alcohol access (FAA). We also found decreased alcohol consumption and alcohol preference comparing all animals in the RO5256390 to all animals in the vehicle group, during 20 h of FAA performed after the abstinence. These effects of RO5256390 lasted for the first 24 h after administration that roughly corresponded to the compound level in the brain, measured by mass spectrometry. Finally, we found that administration of RO5256390 may attenuate motivation for alcohol seeking. Taken together, our findings reveal that activation of TAAR1 may transiently reduce alcohol drinking; thus, TAAR1 is a promising target for the treatment of alcohol abuse and relapse.


Assuntos
Alcoolismo , Dopamina , Feminino , Camundongos , Animais , Receptores Acoplados a Proteínas G/agonistas , Consumo de Bebidas Alcoólicas
4.
Cereb Cortex ; 31(8): 3804-3819, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33739386

RESUMO

Information coding in the hippocampus relies on the interplay between various neuronal ensembles. We discovered that the application of a cholinergic agonist, carbachol (Cch), which triggers oscillatory activity in the gamma range, induces the activity of matrix metalloproteinase 9 (MMP-9)-an enzyme necessary for the maintenance of synaptic plasticity. Using electrophysiological recordings in hippocampal organotypic slices, we show that Cch potentiates the frequency of miniature inhibitory and excitatory postsynaptic currents (mIPSCs and mEPSCs, respectively) in CA1 neurons and this effect is MMP-9 dependent. Interestingly, though MMP-9 inhibition prevents the potentiation of inhibitory events, it further boosts the frequency of excitatory mEPSCs. Such enhancement of the frequency of excitatory events is a result of increased synaptogenesis onto CA1 neurons. Thus, the function of MMP-9 in cholinergically induced plasticity in the hippocampus is to maintain the fine-tuned balance between the excitatory and the inhibitory synaptic transmission.


Assuntos
Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Neurogênese/efeitos dos fármacos , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/diagnóstico por imagem , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos
6.
Genes (Basel) ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38002971

RESUMO

The MMP-9-1562C/T polymorphism exerts an impact on the occurrence and progression of numerous disorders affecting the central nervous system. Using luciferase assays and Q-RT-PCR technique, we have discovered a distinct allele-specific influence of the MMP-9-1562C/T polymorphism on the MMP-9 (Extracellular Matrix Metalloproteinase-9) promoter activity and the expression of MMP-9 mRNA in human neurons derived from SH-SY5Y cells. Subsequently, by employing a pull-down assay paired with mass spectrometry analysis, EMSA (Electromobility Shift Assay), and EMSA supershift techniques, as well as DsiRNA-dependent gene silencing, we have elucidated the mechanism responsible for the allele-specific impact of the MMP-9-1562C/T polymorphism on the transcriptional regulation of the MMP-9 gene. We have discovered that the activity of the MMP-9 promoter and the expression of MMP-9 mRNA in human neurons are regulated in a manner that is specific to the MMP-9-1562C/T allele, with a stronger upregulation being attributed to the C allele. Furthermore, we have demonstrated that the allele-specific action of the MMP-9-1562C/T polymorphism on the neuronal MMP-9 expression is related to HDAC1 (Histone deacetylase 1) and ZNF384 (Zinc Finger Protein 384) transcriptional regulators. We show that HDAC1 and ZNF384 bind to the C and the T alleles differently, forming different regulatory complexes in vitro. Moreover, our data demonstrate that HDAC1 and ZNF384 downregulate MMP-9 gene promoter activity and mRNA expression in human neurons acting mostly via the T allele.


Assuntos
Metaloproteinase 9 da Matriz , Neuroblastoma , Humanos , Frequência do Gene , Metaloproteinase 9 da Matriz/genética , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética
7.
J Mech Behav Biomed Mater ; 133: 105324, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35738132

RESUMO

The effect of a natural filler (diatomaceous earth [DE], a promising drug-delivery agent) and its content was investigated on the performance of a model glass-ionomer cement (GIC). Three sample series, differing in DE content (0, 2.5 and 5 wt%), were prepared using a commercial GIC as a matrix (3M Ketac Molar Easymix). The resultant surface microhardness and roughness, wear performance, and compressive strength of the samples were measured after the samples had been stored in deionized water at 37°C for a fixed time. Moreover, the film thickness was tested for the freshly mixed samples. The numerical data was subjected to statistical analysis, in order to test the null hypotheses of the equality of the measured properties between the reference and the DE-modified samples. According to the results, diatomaceous earth particles are uniformly distributed in the GIC matrix, and the cavities of frustules tend to be filled with the GIC. This translates into the observed performance of the DE-loaded GIC. Compared with the reference material (0 wt% DE), the surface microhardness (2.5 wt% DE, p = 0.014; 5 wt% DE, p = 0.005) and roughness (e.g. Ra; 2.5 wt% DE, p = 0.003; 5 wt% DE, p < 0.001) are increased. No effect on the wear performance (p = 0.530 and 0.256, respectively) or compressive strength (p = 0.514) was noticed in the case of DE partially substituting the glass phase. Based on the study results, it is evidenced that diatom frustules are a suitable filler for application in conventional glass-ionomer cements as the glass-substituting drug-loaded carrier. Notably, however, the surface finish method of the DE-filled materials needs development.


Assuntos
Terra de Diatomáceas , Portadores de Fármacos , Força Compressiva , Cimentos de Ionômeros de Vidro , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA