Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Pathog ; 12(11): e1005990, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27893830

RESUMO

HIV-1 maturation inhibitors (MIs) disrupt the final step in the HIV-1 protease-mediated cleavage of the Gag polyprotein between capsid p24 capsid (CA) and spacer peptide 1 (SP1), leading to the production of infectious virus. BMS-955176 is a second generation MI with improved antiviral activity toward polymorphic Gag variants compared to a first generation MI bevirimat (BVM). The underlying mechanistic reasons for the differences in polymorphic coverage were studied using antiviral assays, an LC/MS assay that quantitatively characterizes CA/SP1 cleavage kinetics of virus like particles (VLPs) and a radiolabel binding assay to determine VLP/MI affinities and dissociation kinetics. Antiviral assay data indicates that BVM does not achieve 100% inhibition of certain polymorphs, even at saturating concentrations. This results in the breakthrough of infectious virus (partial antagonism) regardless of BVM concentration. Reduced maximal percent inhibition (MPI) values for BVM correlated with elevated EC50 values, while rates of HIV-1 protease cleavage at CA/SP1 correlated inversely with the ability of BVM to inhibit HIV-1 Gag polymorphic viruses: genotypes with more rapid CA/SP1 cleavage kinetics were less sensitive to BVM. In vitro inhibition of wild type VLP CA/SP1 cleavage by BVM was not maintained at longer cleavage times. BMS-955176 exhibited greatly improved MPI against polymorphic Gag viruses, binds to Gag polymorphs with higher affinity/longer dissociation half-lives and exhibits greater time-independent inhibition of CA/SP1 cleavage compared to BVM. Virological (MPI) and biochemical (CA/SP1 cleavage rates, MI-specific Gag affinities) data were used to create an integrated semi-quantitative model that quantifies CA/SP1 cleavage rates as a function of both MI and Gag polymorph. The model outputs are in accord with in vitro antiviral observations and correlate with observed in vivo MI efficacies. Overall, these findings may be useful to further understand antiviral profiles and clinical responses of MIs at a basic level, potentially facilitating further improvements to MI potency and coverage.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral/genética , HIV-1/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Linhagem Celular , HIV-1/genética , Humanos , Testes de Sensibilidade Microbiana , Succinatos/farmacologia , Triterpenos/farmacologia , Montagem de Vírus/efeitos dos fármacos
2.
Bioorg Med Chem Lett ; 28(9): 1550-1557, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29631960

RESUMO

The design and synthesis of a series of C28 amine-based betulinic acid derivatives as HIV-1 maturation inhibitors is described. This series represents a continuation of efforts following on from previous studies of C-3 benzoic acid-substituted betulinic acid derivatives as HIV-1 maturation inhibitors (MIs) that were explored in the context of C-28 amide substituents. Compared to the C-28 amide series, the C-28 amine derivatives exhibited further improvements in HIV-1 inhibitory activity toward polymorphisms in the Gag polyprotein as well as improved activity in the presence of human serum. However, plasma exposure of basic amines following oral administration to rats was generally low, leading to a focus on moderating the basicity of the amine moiety distal from the triterpene core. The thiomorpholine dioxide (TMD) 20 emerged from this study as a compound with the optimal antiviral activity and an acceptable pharmacokinetic profile in the C-28 amine series. Compared to the C-28 amide 3, 20 offers a 2- to 4-fold improvement in potency towards the screening viruses, exhibits low shifts in the EC50 values toward the V370A and ΔV370 viruses in the presence of human serum or human serum albumin, and demonstrates improved potency towards the polymorphic T371A and V362I virus variants.


Assuntos
Aminas/farmacologia , Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , HIV-1/efeitos dos fármacos , Triterpenos/farmacologia , Aminas/química , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Triterpenos Pentacíclicos , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química , Ácido Betulínico
3.
Antimicrob Agents Chemother ; 60(7): 3956-69, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27090171

RESUMO

BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Farmacorresistência Viral/genética , HIV-1/metabolismo , Humanos , Succinatos/farmacologia , Triterpenos/farmacologia , Replicação Viral/efeitos dos fármacos
4.
Bioorg Med Chem Lett ; 26(8): 1925-30, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26988305

RESUMO

We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies.


Assuntos
Amidas/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Benzoatos/farmacologia , HIV/efeitos dos fármacos , HIV/crescimento & desenvolvimento , Triterpenos/farmacologia , Administração Oral , Amidas/administração & dosagem , Amidas/química , Animais , Fármacos Anti-HIV/administração & dosagem , Benzoatos/administração & dosagem , Benzoatos/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Triterpenos/administração & dosagem , Triterpenos/química
5.
Bioorg Med Chem ; 24(8): 1757-70, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26968652

RESUMO

A series of C-3 phenyl- and heterocycle-substituted derivatives of C-3 deoxybetulinic acid and C-3 deoxybetulin was designed and synthesized as HIV-1 maturation inhibitors (MIs) and evaluated for their antiviral activity and cytotoxicity in cell culture. A 4-subsituted benzoic acid moiety was identified as an advantageous replacement for the 3'3'-dimethylsuccinate moiety present in previously disclosed MIs that illuminates new aspects of the topography of the pharmacophore. The new analogs exhibit excellent in vitro antiviral activity against wild-type (wt) virus and a lower serum shift when compared with the prototypical HIV-1 MI bevirimat (1, BVM), the first MI to be evaluated in clinical studies. Compound 9a exhibits comparable cell culture potency toward wt virus as 1 (WT EC50=16 nM for 9a compared to 10nM for 1). However, the potency of 9a is less affected by the presence of human serum, while the compound displays a similar pharmacokinetic profile in rats to 1. Hence 9a, the 4-benzoic acid derivative of deoxybetulinic acid, represents a new starting point from which to explore the design of a 2nd generation MI.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , Triterpenos/farmacologia , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/virologia , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química , Replicação Viral/efeitos dos fármacos
6.
J Antimicrob Chemother ; 69(3): 573-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24128669

RESUMO

OBJECTIVES: In an 8 day monotherapy study of subjects infected with HIV-1 (subtype B) (NCT01009814), BMS-626529 (an attachment inhibitor that binds to HIV-1 envelope glycoprotein gp120), administered as the prodrug BMS-663068, produced substantial declines in plasma HIV-1 RNA. However, large variability in susceptibility to BMS-626529 was noted and virus with low susceptibility was less likely to be suppressed by BMS-663068 administration. The current analysis sought to investigate the genotypic correlates of susceptibility to BMS-626529. METHODS: In vitro selection experiments, evaluation of clinical samples of subtype B from the monotherapy study and evaluation of intrinsically resistant subtype AE viruses were conducted. Reverse genetics was used to identify key substitutions in envelope clones responsible for reduced susceptibility. RESULTS: An M426L or S375M change were the major substitutions associated with reductions in susceptibility to BMS-626529 in baseline samples of subtype B viruses from the monotherapy study, with M434I and M475I contributing to a lesser extent. Class resistance in subtype AE viruses was mapped to 375H and 475I substitutions, found in the vast majority of these viruses. Analysis of multiple envelope clones from infected subjects showed higher intrasubject variability in susceptibility to BMS-626529 compared with other classes of entry inhibitors. CONCLUSIONS: These data define key genotypic substitutions in HIV-1 gp120 that could confer phenotypic resistance to BMS-626529.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Proteína gp120 do Envelope de HIV/genética , HIV-1/efeitos dos fármacos , Organofosfatos/farmacologia , Piperazinas/farmacologia , Pró-Fármacos/farmacologia , Triazóis/farmacologia , Substituição de Aminoácidos , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , Humanos , Dados de Sequência Molecular , Organofosfatos/uso terapêutico , Piperazinas/uso terapêutico , Pró-Fármacos/uso terapêutico , Genética Reversa , Análise de Sequência de DNA , Triazóis/uso terapêutico
7.
Antimicrob Agents Chemother ; 57(11): 5500-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23979732

RESUMO

BMS-986001 is a novel HIV nucleoside reverse transcriptase inhibitor (NRTI). To date, little is known about its resistance profile. In order to examine the cross-resistance profile of BMS-986001 to NRTI mutations, a replicating virus system was used to examine specific amino acid mutations known to confer resistance to various NRTIs. In addition, reverse transcriptases from 19 clinical isolates with various NRTI mutations were examined in the Monogram PhenoSense HIV assay. In the site-directed mutagenesis studies, a virus containing a K65R substitution exhibited a 0.4-fold change in 50% effective concentration (EC50) versus the wild type, while the majority of viruses with the Q151M constellation (without M184V) exhibited changes in EC50 versus wild type of 0.23- to 0.48-fold. Susceptibility to BMS-986001 was also maintained in an L74V-containing virus (0.7-fold change), while an M184V-only-containing virus induced a 2- to 3-fold decrease in susceptibility. Increasing numbers of thymidine analog mutation pattern 1 (TAM-1) pathway mutations correlated with decreases in susceptibility to BMS-986001, while viruses with TAM-2 pathway mutations exhibited a 5- to 8-fold decrease in susceptibility, regardless of the number of TAMs. A 22-fold decrease in susceptibility to BMS-986001 was observed in a site-directed mutant containing the T69 insertion complex. Common non-NRTI (NNRTI) mutations had little impact on susceptibility to BMS-986001. The results from the site-directed mutants correlated well with the more complicated genotypes found in NRTI-resistant clinical isolates. Data from clinical studies are needed to determine the clinically relevant resistance cutoff values for BMS-986001.


Assuntos
Farmacorresistência Viral Múltipla/genética , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , Mutação , Inibidores da Transcriptase Reversa/farmacologia , Timidina/análogos & derivados , Farmacorresistência Viral Múltipla/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Timidina/farmacologia
8.
Antimicrob Agents Chemother ; 56(7): 3498-507, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547625

RESUMO

BMS-663068 is the phosphonooxymethyl prodrug of BMS-626529, a novel small-molecule attachment inhibitor that targets HIV-1 gp120 and prevents its binding to CD4(+) T cells. The activity of BMS-626529 is virus dependent, due to heterogeneity within gp120. In order to better understand the anti-HIV-1 spectrum of BMS-626529 against HIV-1, in vitro activities against a wide variety of laboratory strains and clinical isolates were determined. BMS-626529 had half-maximal effective concentration (EC(50)) values of <10 nM against the vast majority of viral isolates; however, susceptibility varied by >6 log(10), with half-maximal effective concentration values in the low pM range against the most susceptible viruses. The in vitro antiviral activity of BMS-626529 was generally not associated with either tropism or subtype, with few exceptions. Measurement of the binding affinity of BMS-626529 for purified gp120 suggests that a contributory factor to its inhibitory potency may be a relatively long dissociative half-life. Finally, in two-drug combination studies, BMS-626529 demonstrated additive or synergistic interactions with antiretroviral drugs of different mechanistic classes. These results suggest that BMS-626529 should be active against the majority of HIV-1 viruses and support the continued clinical development of the compound.


Assuntos
Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Células Cultivadas , Células HCT116 , HIV/efeitos dos fármacos , HIV/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Células HeLa , Células Hep G2 , Humanos
9.
Antimicrob Agents Chemother ; 55(2): 729-37, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21078948

RESUMO

Attachment inhibitors (AI) are a novel class of HIV-1 antivirals, with little information available on clinical resistance. BMS-488043 is an orally bioavailable AI that binds to gp120 of HIV-1 and abrogates its binding to CD4(+) lymphocytes. A clinical proof-of-concept study of the AI BMS-488043, administered as monotherapy for 8 days, demonstrated significant viral load reductions. In order to examine the effects of AI monotherapy on HIV-1 sensitivity, phenotypic sensitivity assessment of baseline and postdosing (day 8) samples was performed. These analyses revealed that four subjects had emergent phenotypic resistance (a 50% effective concentration [EC(50)] >10-fold greater than the baseline value) and four had high baseline EC(50)s (>200 nM). Population sequencing and sequence determination of cloned envelope genes uncovered five gp120 mutations at four loci (V68A, L116I, S375I/N, and M426L) associated with BMS-488043 resistance. Substitution at the 375 locus, located near the CD4 binding pocket, was the most common (maintained in 5/8 subjects at day 8). The five substitutions were evaluated for their effects on AI sensitivity through reverse genetics in functional envelopes, confirming their role in decreasing sensitivity to the drug. Additional analyses revealed that these substitutions did not alter sensitivity to other HIV-1 entry inhibitors. Thus, our studies demonstrate that although the majority of the subjects' viruses maintained sensitivity to BMS-488043, substitutions can be selected that decrease HIV-1 susceptibility to the AI. Most importantly, the substitutions described here are not associated with resistance to other approved antiretrovirals, and therefore, attachment inhibitors could complement the current arsenal of anti-HIV agents.


Assuntos
Farmacorresistência Viral , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Piperazinas/farmacologia , Sequência de Aminoácidos , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Antígenos CD4/metabolismo , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Proteína gp120 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/administração & dosagem , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/virologia , HIV-1/genética , Humanos , Indóis , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Piperazinas/administração & dosagem , Piperazinas/uso terapêutico , Reação em Cadeia da Polimerase , Ácido Pirúvico , Análise de Sequência de DNA , Resultado do Tratamento
10.
Antimicrob Agents Chemother ; 52(5): 1759-67, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18316521

RESUMO

Entecavir (ETV) was developed for the treatment of chronic hepatitis B virus (HBV) infection and is globally approved for that indication. Initial preclinical studies indicated that ETV had no significant activity against human immunodeficiency virus type 1 (HIV-1) in cultured cell lines at physiologically relevant ETV concentrations, using traditional anti-HIV assays. In response to recent clinical observations of anti-HIV activity of ETV in HIV/HBV-coinfected patients not receiving highly active antiretroviral therapy (HAART), additional investigative studies were conducted to expand upon earlier results. An extended panel of HIV-1 laboratory and clinical strains and cell types was tested against ETV, along with a comparison of assay methodologies and resistance profiling. These latest studies confirmed that ETV has only weak activity against HIV, using established assay systems. However, a >100-fold enhancement of antiviral activity (equivalent to the antiviral activity of lamivudine) could be obtained when assay conditions were modified to reduce the initial viral challenge. Also, the selection of a M184I virus variant during the passage of HIV-1 at high concentrations of ETV confirmed that ETV can exert inhibitory pressure on the virus. These findings may have a significant impact on how future assays are performed with compounds to be used in patients infected with HIV. These results support the recommendation that ETV therapy should be administered in concert with HAART for HIV/HBV-coinfected patients.


Assuntos
Guanina/análogos & derivados , HIV-1/efeitos dos fármacos , Antivirais/farmacologia , Linhagem Celular , Guanina/farmacologia , Infecções por HIV/tratamento farmacológico , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Humanos
11.
J Med Chem ; 61(1): 62-80, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29271653

RESUMO

Human immunodeficiency virus-1 (HIV-1) infection currently requires lifelong therapy with drugs that are used in combination to control viremia. The indole-3-glyoxamide 6 was discovered as an inhibitor of HIV-1 infectivity using a phenotypic screen and derivatives of this compound were found to interfere with the HIV-1 entry process by stabilizing a conformation of the virus gp120 protein not recognized by the host cell CD4 receptor. An extensive optimization program led to the identification of temsavir (31), which exhibited an improved antiviral and pharmacokinetic profile compared to 6 and was explored in phase 3 clinical trials as the phosphonooxymethyl derivative fostemsavir (35), a prodrug designed to address dissolution- and solubility-limited absorption issues. In this drug annotation, we summarize the structure-activity and structure-liability studies leading to the discovery of 31 and the clinical studies conducted with 35 that entailed the development of an extended release formulation suitable for phase 3 clinical trials.


Assuntos
Descoberta de Drogas , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Organofosfatos/metabolismo , Organofosfatos/farmacologia , Piperazinas/metabolismo , Piperazinas/farmacologia , Pró-Fármacos/metabolismo , Ligação Viral/efeitos dos fármacos , Administração Oral , Ensaios Clínicos Fase I como Assunto , Humanos , Modelos Moleculares , Conformação Molecular , Organofosfatos/administração & dosagem , Organofosfatos/química , Piperazinas/administração & dosagem , Piperazinas/química
12.
J Med Chem ; 61(16): 7289-7313, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30067361

RESUMO

GSK3532795, formerly known as BMS-955176 (1), is a potent, orally active, second-generation HIV-1 maturation inhibitor (MI) that advanced through phase IIb clinical trials. The careful design, selection, and evaluation of substituents appended to the C-3 and C-17 positions of the natural product betulinic acid (3) was critical in attaining a molecule with the desired virological and pharmacokinetic profile. Herein, we highlight the key insights made in the discovery program and detail the evolution of the structure-activity relationships (SARs) that led to the design of the specific C-17 amine moiety in 1. These modifications ultimately enabled the discovery of 1 as a second-generation MI that combines broad coverage of polymorphic viruses (EC50 <15 nM toward a panel of common polymorphisms representative of 96.5% HIV-1 subtype B virus) with a favorable pharmacokinetic profile in preclinical species.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Crisenos/química , Morfolinas/química , Relação Estrutura-Atividade , Triterpenos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Administração Oral , Animais , Fármacos Anti-HIV/farmacocinética , Ácido Benzoico/química , Disponibilidade Biológica , Técnicas de Química Sintética , Crisenos/farmacologia , Cães , Desenho de Fármacos , Estabilidade de Medicamentos , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos , Camundongos Knockout , Microssomos Hepáticos/efeitos dos fármacos , Morfolinas/farmacologia , Polimorfismo Genético , Ratos Sprague-Dawley , Triterpenos/farmacologia
13.
ACS Med Chem Lett ; 7(6): 568-72, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27326328

RESUMO

HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.

14.
Virology ; 402(2): 256-61, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20400170

RESUMO

Treatment with HIV attachment inhibitors (AIs) can select for escape mutants throughout the viral envelope. We report on three such mutations: F423Y (gp120 CD4 binding pocket) and I595F and K655E (gp41 ectodomain). Each displayed decreased sensitivity to the AI BMS-488043 and earlier generation AIs, along with increased sensitivity to the broadly neutralizing antibodies 2F5 and 4E10, without affecting the rate of viral entry or sensitivity to the entry inhibitors AMD-3100 and Enfuvirtide. We also observed that I595F did not substantially increase envelope sensitivity to HIV-infected patient sera. Based on these observations, we propose that although F423Y, I595F and K655E may all affect the presentation of the 2F5 and 4E10 epitopes, natural immune mimicry is rare only for the I595F effect. Thus, it seems that in addition to restricting AI resistance development, incorporation of I595F into an appropriate vehicle could elicit a novel antiviral response to improve vaccine efficacy.


Assuntos
Anticorpos Neutralizantes/imunologia , Farmacorresistência Viral , Anticorpos Anti-HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Mutação de Sentido Incorreto , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , Inibidores da Fusão de HIV/farmacologia , HIV-1/isolamento & purificação , Humanos , Indóis , Estrutura Molecular , Testes de Neutralização , Piperazinas/farmacologia , Ácido Pirúvico
15.
J Med Chem ; 52(23): 7778-87, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19769332

RESUMO

Azaindole derivatives derived from the screening lead 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione (1) were prepared and characterized to assess their potential as inhibitors of HIV-1 attachment. Systematic replacement of each of the unfused carbon atoms in the phenyl ring of the indole moiety by a nitrogen atom provided four different azaindole derivatives that displayed a clear SAR for antiviral activity and all of which displayed marked improvements in pharmaceutical properties. Optimization of these azaindole leads resulted in the identification of two compounds that were advanced to clinical studies: (R)-1-(4-benzoyl-2-methylpiperazin-1-yl)-2-(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)ethane-1,2-dione (BMS-377806, 3) and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043, 4). In a preliminary clinical study, 4 administered as monotherapy for 8 days, reduced viremia in HIV-1-infected subjects, providing proof of concept for this mechanistic class.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Indóis/química , Piperazinas/farmacologia , Ligação Viral/efeitos dos fármacos , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Linhagem Celular , Descoberta de Drogas , Humanos , Modelos Moleculares , Conformação Molecular , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Ácido Pirúvico , Ratos , Reprodutibilidade dos Testes
16.
J Virol ; 80(8): 4017-25, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16571818

RESUMO

BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.


Assuntos
Fármacos Anti-HIV/farmacologia , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/química , HIV-1/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/efeitos dos fármacos , Células HeLa , Humanos , Indóis , Piperazinas/farmacologia , Conformação Proteica , Ácido Pirúvico , Vírion/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA