Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 137(19): 6160-3, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25915769

RESUMO

We report the creation of highly asymmetric lamellar structures with a well-designed miktoarm star block copolymer of the S(IS')3 type, where S and S' are polystyrenes of different lengths and I is poly(isoprene). The domain spacing can be tuned continuously from 37 nm to over 300 nm when the miktoarm star block copolymer is blended with suitable molecular weight polystyrene homopolymers. Beyond the unbinding transition of the lamellar phase, extremely asymmetric lamellar structures were obtained with up to 97 wt % polystyrene, remarkably leaving the poly(isoprene) layers intact at only 3 wt %!

2.
Polymers (Basel) ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959907

RESUMO

In this study, the use of anionic polymerization for the synthesis of living poly(dimethylsiloxane) or PDMS-Li+, as well as poly(2-vinylpyridine) or P2VP-Li+ homopolymers, and the subsequent use of chlorosilane chemistry in order for the two blocks to be covalently joined leading to PDMS-b-P2VP copolymers is proposed. High vacuum manipulations enabled the synthesis of well-defined materials with different molecular weights (Μ¯n, from 9.8 to 36.0 kg/mol) and volume fraction ratios (φ, from 0.15 to 0.67). The Μ¯n values, dispersity indices, and composition were determined through membrane/vapor pressure osmometry (MO/VPO), size exclusion chromatography (SEC), and proton nuclear magnetic resonance spectroscopy (1H NMR), respectively, while the thermal transitions were determined via differential scanning calorimetry (DSC). The morphological characterization results suggested that for common composition ratios, lamellar, cylindrical, and spherical phases with domain periodicities ranging from approximately 15 to 39 nm are formed. A post-polymerization chemical modification reaction to quaternize the nitrogen atom in some of the P2VP monomeric units in the copolymer with the highest P2VP content, and the additional characterizations through 1H NMR, infrared spectroscopy, DSC, and contact angle are reported. The synthesis, characterization, and quaternization of the copolymer structure are important findings toward the preparation of functional materials with enhanced properties suitable for various nanotechnology applications.

3.
ACS Nano ; 10(2): 2054-62, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26760051

RESUMO

Nanolayered lamellae are common structures in nanoscience and nanotechnology, but most are nearly symmetric in layer thickness. Here, we report on the structure and mechanics of highly asymmetric and thermodynamically stable soft-hard lamellar structures self-assembled from optimally designed PS1-(PI-b-PS2)3 miktoarm star block copolymers. The remarkable mechanical properties of these strong and ductile PS (polystyrene)-based nanomaterials can be tuned over a broad range by varying the hard layer thickness while maintaining the soft layer thickness constant at 13 nm. Upon deformation, thin PS lamellae (<100 nm) exhibited kinks and predamaged/damaged grains, as well as cavitation in the soft layers. In contrast, deformation of thick lamellae (>100 nm) manifests cavitation in both soft and hard nanolayers. In situ tensile-SAXS experiments revealed the evolution of cavities during deformation and confirmed that the damage in such systems reflects both plastic deformation by shear and residual cavities. The aspects of the mechanics should point to universal deformation behavior in broader classes of asymmetric hard-soft lamellar materials, whose properties are just being revealed for versatile applications.

4.
Nanoscale ; 8(4): 2177-87, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26731306

RESUMO

The use of a low-χ, symmetric block copolymer as an alternative to the high-χ systems currently being translated towards industrial silicon chip manufacture has been demonstrated. Here, the methodology for generating on-chip, etch resistant masks and subsequent pattern transfer to the substrate using ultra-small dimension, lamellar, microphase separated polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) is described. Well-controlled films of a perpendicularly oriented lamellar pattern with a domain size of ∼8 nm were achieved through amplification of an effective interaction parameter (χeff) of the BCP system. The self-assembled films were used as 'templates' for the generation of inorganic oxides nanowire arrays through selective metal ion inclusion and subsequent processing. Inclusion is a significant challenge because the lamellar systems have less chemical and mechanical robustness than the cylinder forming materials. The oxide nanowires of uniform diameter (∼8 nm) were isolated and their structure mimics the original BCP nanopatterns. We demonstrate that these lamellar phase iron oxide nanowire arrays could be used as a resist mask to fabricate densely packed, identical ordered, good fidelity silicon nanowire arrays on the substrate. Possible applications of the materials prepared are discussed, in particular, in the area of photonics and photoluminescence where the properties are found to be similar to those of surface-oxidized silicon nanocrystals and porous silicon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA