Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500455

RESUMO

Frequent monitoring of sea food, especially shellfish samples, for the presence of biotoxins serves not only as a valuable strategy to mitigate adulteration associated health risks, but could also be used to develop predictive models to understand algal explosion and toxin trends. Periodic toxin assessment is often restricted due to poor sensitivity, multifarious cleaning/extraction protocols and high operational costs of conventional detection methods. Through this work, a simplistic approach to quantitatively assess the presence of a representative marine neurotoxin, Domoic acid (DA), from spiked water and crab meat samples is presented. DA sensing was performed based on surface-enhanced Raman scattering (SERS) using silver nanoparticle enriched diatomaceous earth­a biological photonic crystal material in nature. Distinctive optical features of the quasi-ordered pore patterns in diatom skeleton with sporadic yet uniform functionalization of silver nanoparticles act as excellent SERS substrates with improved DA signals. Different concentrations of DA were tested on the substrates with the lowest detectable concentration being 1 ppm that falls well below the regulatory DA levels in seafood (>20 ppm). All the measurements were rapid and were performed within a measurement time of 1 min. Utilizing the measurement results, a standard calibration curve between SERS signal intensity and DA concentration was developed. The calibration curve was later utilized to predict the DA concentration from spiked Dungeness crab meat samples. SERS based quantitative assessment was further complemented with principal component analysis and partial least square regression studies. The tested methodology aims to bring forth a sensitive yet simple, economical and an extraction free routine to assess biotoxin presence in sea food samples onsite.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Nanopartículas Metálicas/química , Ácido Caínico , Análise Espectral Raman/métodos , Alimentos Marinhos
2.
Nat Commun ; 15(1): 826, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280874

RESUMO

Silicon microring modulator plays a critical role in energy-efficient optical interconnect and optical computing owing to its ultra-compact footprint and capability for on-chip wavelength-division multiplexing. However, existing silicon microring modulators usually require more than 2 V of driving voltage (Vpp), which is limited by both material properties and device structures. Here, we present a metal-oxide-semiconductor capacitor microring modulator through heterogeneous integration between silicon photonics and titanium-doped indium oxide, which is a high-mobility transparent conductive oxide (TCO) with a strong plasma dispersion effect. The device is co-fabricated by Intel's photonics fab and our in-house TCO patterning processes, which exhibits a high modulation efficiency of 117 pm/V and consequently can be driven by a very low Vpp of 0.8 V. At a 11 GHz modulation bandwidth where the modulator is limited by the RC bandwidth, we obtained 25 Gb/s clear eye diagrams with energy efficiency of 53 fJ/bit.

3.
Sci Rep ; 13(1): 5269, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002281

RESUMO

Silicon microring resonators (Si-MRRs) play essential roles in on-chip wavelength division multiplexing (WDM) systems due to their ultra-compact size and low energy consumption. However, the resonant wavelength of Si-MRRs is very sensitive to temperature fluctuations and fabrication process variation. Typically, each Si-MRR in the WDM system requires precise wavelength control by free carrier injection using PIN diodes or thermal heaters that consume high power. This work experimentally demonstrates gate-tuning on-chip WDM filters for the first time with large wavelength coverage for the entire channel spacing using a Si-MRR array driven by high mobility titanium-doped indium oxide (ITiO) gates. The integrated Si-MRRs achieve unprecedented wavelength tunability up to 589 pm/V, or VπL of 0.050 V cm with a high-quality factor of 5200. The on-chip WDM filters, which consist of four cascaded ITiO-driven Si-MRRs, can be continuously tuned across the 1543-1548 nm wavelength range by gate biases with near-zero power consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA