Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Pathol ; 192(5): 738-749, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181335

RESUMO

Kidney organoids derived from pluripotent stem cells and epithelial organoids derived from adult tissue (tubuloids) have been used to study various kidney disorders with a strong genetic component, such as polycystic kidney disease, Wilms tumor, and congenital nephrotic syndrome. However, complex disorders without clear genetic associations, such as acute kidney injury and many forms of chronic kidney disease, are only just beginning to be investigated using these in vitro approaches. Although organoids are a reductionist model, they contain clinically relevant cell populations that may help to elucidate human-specific pathogenic mechanisms. Thus, organoids may complement animal disease models to accelerate the translation of laboratory proof-of-concept research into clinical practice. This review discusses whether kidney organoids and tubuloids are suitable models for the study of complex human kidney disease and highlights their advantages and limitations compared with monolayer cell culture and animal models.


Assuntos
Injúria Renal Aguda , Células-Tronco Pluripotentes , Insuficiência Renal Crônica , Animais , Diferenciação Celular , Feminino , Humanos , Rim , Masculino , Organoides
2.
J Clin Invest ; 134(10)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625739

RESUMO

Renal interstitial fibrosis is an important mechanism in the progression of chronic kidney disease (CKD) to end-stage kidney disease. However, we lack specific treatments to slow or halt renal fibrosis. Ribosome profiling identified upregulation of a secreted micropeptide, C4orf48 (Cf48), in mouse diabetic nephropathy. Cf48 RNA and protein levels were upregulated in tubular epithelial cells in human and experimental CKD. Serum Cf48 levels were increased in human CKD and correlated with loss of kidney function, increasing CKD stage, and the degree of active interstitial fibrosis. Cf48 overexpression in mice accelerated renal fibrosis, while Cf48 gene deletion or knockdown by antisense oligonucleotides significantly reduced renal fibrosis in CKD models. In vitro, recombinant Cf48 (rCf48) enhanced TGF-ß1-induced fibrotic responses in renal fibroblasts and epithelial cells independently of Smad3 phosphorylation. Cellular uptake of Cf48 and its profibrotic response in fibroblasts operated via the transferrin receptor. RNA immunoprecipitation-sequencing identified Cf48 binding to mRNA of genes involved in the fibrotic response, including Serpine1, Acta2, Ccn2, and Col4a1. rCf48 binds to the 3'UTR of Serpine1 and increases mRNA half-life. We identify the secreted Cf48 micropeptide as a potential enhancer of renal fibrosis that operates as an RNA-binding peptide to promote the production of extracellular matrix.


Assuntos
Nefropatias Diabéticas , Fibrose , Proteínas do Tecido Nervoso , Insuficiência Renal Crônica , Animais , Humanos , Masculino , Camundongos , Regiões 3' não Traduzidas , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Rim/metabolismo , Rim/patologia , Camundongos Knockout , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Smad3/metabolismo , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
3.
Free Radic Biol Med ; 193(Pt 2): 685-693, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36395955

RESUMO

Oxidative stress generating DNA damage has been shown to be a key characteristic in Alzheimer's disease (AD). However, how it affects the pathogenesis of AD is not yet fully understood. Neil3 is a DNA glycosylase initiating repair of oxidative DNA base lesions and with a distinct expression pattern in proliferating cells. In brain, its function has been linked to hippocampal-dependent memory and to induction of neurogenesis after stroke and in prion disease. Here, we generated a novel AD mouse model deficient for Neil3 to study the impact of impaired oxidative base lesion repair on the pathogenesis of AD. Our results demonstrate an age-dependent decrease in amyloid-ß (Aß) plaque deposition in female Neil3-deficient AD mice, whereas no significant difference was observed in male mice. Furthermore, male but not female Neil3-deficient AD mice show reduced neural stem cell proliferation in the adult hippocampus and impaired working memory compared to controls. These effects seem to be independent of DNA repair as both sexes show increased level of oxidative base lesions in the hippocampus upon loss of Neil3. Thus, our findings suggest an age- and sex-dependent role of Neil3 in the progression of AD by altering cerebral Aß accumulation and promoting adult hippocampal neurogenesis to maintain cognitive function.


Assuntos
Doença de Alzheimer , DNA Glicosilases , Masculino , Feminino , Camundongos , Animais , Doença de Alzheimer/genética , DNA Glicosilases/genética , Neurogênese/genética , Modelos Animais de Doenças , Placa Amiloide/genética , Peptídeos beta-Amiloides/genética , Transtornos da Memória
4.
Biointerphases ; 17(6): 060801, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344295

RESUMO

The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Humanos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Organoides , Impressão Tridimensional , Engenharia Tecidual/métodos , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA