Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 125(Pt 17): 4103-13, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22623719

RESUMO

An understanding of cytokinesis at the molecular level requires a detailed description of the protein complexes that perform central activities during this process. The proteins Hof1p, Cyk3p, Inn1p and Myo1p each represent one of the four genetically defined and partially complementary pathways of cytokinesis in the yeast Saccharomyces cerevisiae. Here we show that the osmosensor Sho1p is required for correct cell-cell separation. Shortly before cytokinesis Sho1p sequentially assembles with Hof1p, Inn1p and Cyk3p, into a complex (the HICS complex) that might help to connect the membrane with the actin-myosin ring. The HICS complex is formed exclusively through interactions between three SH3 domains located in Cyk3p, Hof1p and Sho1p, and five acceptor sites found in Cyk3p, Hof1p and Inn1p. Owing to the overlapping binding specificities of its members the HICS complex is best described as ensembles of isomeric interaction states that precisely coordinate the different functions of the interactors during cytokinesis.


Assuntos
Membrana Celular/metabolismo , Citocinese , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Membrana Celular/ultraestrutura , Ligantes , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/ultraestrutura , Transdução de Sinais
2.
J Cell Sci ; 124(Pt 1): 35-46, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21118957

RESUMO

We used a generally applicable strategy to collect and structure the protein interactions of the yeast type II protein phosphatase Ptc1p and its binding partner Nbp2p. The procedure transformed primary unstructured protein interaction data into an ensemble of alternative interaction states. Certain combinations of proteins are allowed in different network configurations. Nbp2p serves as the network hub and brings seven kinases in close contact to Ptc1p. As a consequence, the deletion of NBP2 affects several cellular processes including organelle inheritance and the responses to mating hormone, cell wall stress and high osmolarity; it also impairs the proper execution of the morphogenetic program. Our constraint interaction map provides a basis for understanding a subset of the observed phenotypes and assigns the Ptc1p-Nbp2p module a role in synchronizing the associated kinases during the cell cycle.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteína Fosfatase 2/química , Proteína Fosfatase 2/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 106(4): 1157-62, 2009 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19144915

RESUMO

Molecular chaperone heat-shock protein 90 kDa (Hsp90) is known to facilitate the conformational maturation of a diverse range of proteins involved in different signal transduction pathways during development. Recent studies have implicated Hsp90 in transcriptional regulation and an important role for Hsp90 in epigenetic processes has been proposed. Importantly, genetic and pharmacological perturbation of Hsp90 was shown to reveal heritable phenotypic variation and Hsp90 was found to play an important role in buffering genetic and epigenetic variation whose expression led to altered phenotypes. The underlying molecular mechanism remains elusive, however. Here, we show a direct molecular interaction between Hsp90 and Trithorax (Trx). Trx is a member of the TrxG chromatin proteins controlling, together with the members of the Polycomb group, the developmental fate of cells by modulating epigenetic signals. Hsp90 cooperates with Trx at chromatin for maintaining the active expression state of targets like the Hox genes. Pharmacological inhibition of Hsp90 results in degradation of Trx and a concomitant down-regulation of homeotic gene expression. A similar effect is observed with the human orthologue mixed-lineage leukemia. Connecting an epigenetic network controlling major developmental and cellular pathways with a system sensing external cues may explain the rapid fixation and epigenetic inheritance of phenotypic variation as a result of impaired Hsp90.


Assuntos
Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Genes de Insetos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Mutação/genética , Fenótipo , Proteínas do Grupo Polycomb , Estabilidade Proteica , Transporte Proteico , Proteínas Repressoras/metabolismo , Transcrição Gênica
4.
Mol Cell Biol ; 24(9): 3769-81, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15082772

RESUMO

Fibroblast growth factor (FGF) receptor (FGFR) signaling controls the migration of glial, mesodermal, and tracheal cells in Drosophila melanogaster. Little is known about the molecular events linking receptor activation to cytoskeletal rearrangements during cell migration. We have performed a functional characterization of Downstream-of-FGFR (Dof), a putative adapter protein that acts specifically in FGFR signal transduction in Drosophila. By combining reverse genetic, cell culture, and biochemical approaches, we demonstrate that Dof is a specific substrate for the two Drosophila FGFRs. After defining a minimal Dof rescue protein, we identify two regions important for Dof function in mesodermal and tracheal cell migration. The N-terminal 484 amino acids are strictly required for the interaction of Dof with the FGFRs. Upon receptor activation, tyrosine residue 515 becomes phosphorylated and recruits the phosphatase Corkscrew (Csw). Csw recruitment represents an essential step in FGF-induced cell migration and in the activation of the Ras/MAPK pathway. However, our results also indicate that the activation of Ras is not sufficient to activate the migration machinery in tracheal and mesodermal cells. Additional proteins binding either to the FGFRs, to Dof, or to Csw appear to be crucial for a chemotactic response.


Assuntos
Movimento Celular/fisiologia , Proteínas de Drosophila/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ativação Enzimática , Sistema de Sinalização das MAP Quinases/fisiologia , Mesoderma/citologia , Mesoderma/fisiologia , Proteínas Tirosina Fosfatases não Receptoras , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transgenes , Tirosina/metabolismo
5.
Gene ; 287(1-2): 55-66, 2002 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-11992723

RESUMO

The development of the tracheal system of Drosophila melanogaster represents a paradigm for studying the molecular mechanisms involved in the formation of a branched tubular network. Tracheogenesis has been characterized at the morphological, cellular and genetic level and a series of successive, but linked events have been described as the basis for the formation of the complex network of tubules which extend over the entire organism. Tracheal cells stop to divide early in the process of tracheogenesis and the formation of the interconnected network requires highly controlled cell migration events and cell shape changes. A number of genes involved in these two processes have been identified but in order to obtain a more complete view of branching morphogenesis, many more genes carrying essential functions have to be isolated and characterized. Here, we provide a progress report on our attempts to identify further genes expressed in the tracheal system. We show that empty spiracles (ems), a head gap gene, is required for the formation of a specific tracheal branch, the visceral branch. We also identified a Sulfotransferase and a Multiple Inositol Polyphosphate phosphatase that are strongly upregulated in tracheal cells and discuss their possible involvement in tracheal development.


Assuntos
Drosophila melanogaster/genética , Traqueia/embriologia , Animais , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/enzimologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Modelos Animais , Proteínas Nucleares/genética , Transdução de Sinais , Sulfotransferases/genética , Sulfotransferases/metabolismo , Traqueia/citologia , Traqueia/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA