Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gels ; 8(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35877478

RESUMO

Chitosan, a copolymer of glucosamine and N-acetyl glucosamine, is derived from chitin. Chitin is found in cell walls of crustaceans, fungi, insects and in some algae, microorganisms, and some invertebrate animals. Chitosan is emerging as a very important raw material for the synthesis of a wide range of products used for food, medical, pharmaceutical, health care, agriculture, industry, and environmental pollution protection. This review, in line with the focus of this special issue, provides the reader with (1) an overview on different sources of chitin, (2) advances in techniques used to extract chitin and converting it into chitosan, (3) the importance of the inherent characteristics of the chitosan from different sources that makes them suitable for specific applications and, finally, (4) briefly summarizes ways of tailoring chitosan for specific applications. The review also presents the influence of the degree of acetylation (DA) and degree of deacetylation (DDA), molecular weight (Mw) on the physicochemical and biological properties of chitosan, acid-base behavior, biodegradability, solubility, reactivity, among many other properties that determine processability and suitability for specific applications. This is intended to help guide researchers select the right chitosan raw material for their specific applications.

2.
ACS Omega ; 7(27): 23749-23758, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847290

RESUMO

Lignosulfonate (LS), one of the byproducts of the paper and pulp industry, was mainly used as an energy source in the last decade until the valorization of lignin through different functionalization methods grew in importance. Polymerization using multicopper oxidase laccase (from the Myceliophthora thermophila fungus) is one of such methods, which not only enhances properties such as hydrophobicity, flame retardancy, and bonding properties but can also be used for food and possesses pharmaceutical-like antimicrobial properties and aesthetic features of materials. Appropriate downstream processing methods are needed to produce solids that allow the preservation of particle morphology, a vital factor for the valorization process. In this work, an optimization of the enzymatic polymerization via spray-drying of LS was investigated. The response surface methodology was used to optimize the drying process, reduce the polymerization time, and maximize the dried mass yield. Particles formed showed a concave morphology and enhanced solubility while the temperature sensitivity of spray-drying protected the phenol functionalities beneficial for polymerization. Using the optimized parameters, a yield of 65% in a polymerization time of only 13 min was obtained. The experimental values were found to be in agreement with the predicted values of the factors (R 2: 95.2% and p-value: 0.0001), indicating the suitability of the model in predicting polymerization time and yield of the spray-drying process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA