Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Ecol ; 44(7-8): 681-689, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29858747

RESUMO

Maize lethal necrosis is one of the most devastating diseases of maize causing yield losses reaching up to 90% in sub-Saharan Africa. The disease is caused by a combination of maize chlorotic mottle virus (MCMV) and any one of cereal viruses in the Potyviridae group such as sugarcane mosaic virus. MCMV has been reported to be transmitted mainly by maize thrips (Frankliniella williamsi) and onion thrips (Thrips tabaci). To better understand the role of thrips vectors in the epidemiology of the disease, we investigated behavioral responses of F. williamsi and T. tabaci, to volatiles collected from maize seedlings infected with MCMV in a four-arm olfactometer bioassay. Volatile profiles from MCMV-infected and healthy maize plants were compared by gas chromatography (GC) and GC coupled mass spectrometry analyses. In the bioassays, both sexes of F. williamsi and male T. tabaci were significantly attracted to volatiles from maize plants infected with MCMV compared to healthy plants and solvent controls. Moreover, volatile analysis revealed strong induction of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in MCMV-infected maize seedlings. Our findings demonstrate MCMV induces changes in volatile profiles of host plants to elicit attraction of thrips vectors. The increased vector contact rates with MCMV-infected host plants could enhance virus transmission if thrips feed on the infected plants and acquire the pathogen prior to dispersal. Uncovering the mechanisms mediating interactions between vectors, host plants and pathogens provides useful insights for understanding the vector ecology and disease epidemiology, which in turn may contribute in designing integrated vector management strategies.


Assuntos
Gammaherpesvirinae/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Compostos Orgânicos Voláteis/metabolismo , Zea mays/virologia , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Insetos Vetores/virologia , Masculino , Plântula/química , Plântula/fisiologia , Plântula/virologia , Tisanópteros/virologia , Compostos Orgânicos Voláteis/análise , Zea mays/química , Zea mays/fisiologia
2.
Sensors (Basel) ; 17(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099780

RESUMO

Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.


Assuntos
Agricultura/instrumentação , Agricultura/métodos , Produtos Agrícolas/fisiologia , Ecologia/instrumentação , Ecologia/métodos , Comunicações Via Satélite , Zea mays/fisiologia , Humanos , Quênia
3.
Phytopathology ; 105(7): 956-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25822185

RESUMO

In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on maize in Kenya. The disease has since been confirmed in Rwanda and the Democratic Republic of Congo, and similar symptoms have been reported in Tanzania, Uganda, South Sudan, and Ethiopia. In 2012, yield losses of up to 90% resulted in an estimated grain loss of 126,000 metric tons valued at $52 million in Kenya alone. In eastern Africa, MLN was found to result from coinfection of maize with Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV), although MCMV alone appears to cause significant crop losses. We summarize here the results of collaborative research undertaken to understand the biology and epidemiology of MLN in East Africa and to develop disease management strategies, including identification of MLN-tolerant maize germplasm. We discuss recent progress, identify major issues requiring further research, and discuss the possible next steps for effective management of MLN.


Assuntos
Potyviridae/fisiologia , Tombusviridae/fisiologia , Zea mays/virologia , África Subsaariana , Abastecimento de Alimentos , Interações Hospedeiro-Patógeno , Controle de Pragas , Doenças das Plantas/virologia
4.
Heliyon ; 7(12): e08588, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34977409

RESUMO

Termites perform key ecological functions and they also cause crop damage. Land use change resulting from agricultural intensification can result in changes in termite species diversity and abundance. Termite species occurring in natural vegetation, maize monocrop and maize-beans intercrop macrohabitats were investigated in Embu and Machakos Counties, Kenya. Influence of soil properties and seasons was also evaluated. Across the two Counties, seven termite species were recorded with Machakos County having the highest number. Additive diversity partitioning of species richness and Simpson diversity showed that, α component contributed to 98.3% and 99.1% of the total diversity, respectively. Population densities of three termite species significantly varied between land use types in Machakos County but there were no differences in termite species abundance in Embu County. In addition, there were no significant differences in species richness between macrohabitats within each County. In Embu, season significantly influenced the abundance of Macrotermes subhyalinus, M. herus, and Coptotermes formosanus which occurred in greater numbers during the wet season. There was a significant influence of land use on Trinervitermes gratiosus and C. formosanus in Machakos with both species occurring in higher numbers in natural vegetation. Trinervitermes gratiosus was negatively associated with Mn and positively correlated to pH and sand. Macrotermes subhyalinus and M. herus showed a positive association with P and silt while C. formosanus was positively correlated to Ca and Mg. These findings provide an insight into the effects of land use change from natural vegetation to maize agro-ecosystems on termite diversity. It also provides a baseline for further studies on termite diversity in Kenya and their ecological significance.

5.
Plants (Basel) ; 9(4)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231080

RESUMO

In eastern Africa, Maize lethal necrosis (MLN) is caused by the co-infection of maize plants with Maize chlorotic mottle virus (MCMV) (Tombusviridae: Machlomovirus) and Sugarcane mosaic virus (SCMV) (Potyviridae: Potyvirus). With the disease being new to Africa, minimal effective management strategies exist against it. This study examined the potential of 10 fungal isolates to colonize maize plants and induce resistance against MCMV and SCMV. Maize seeds were soaked in fungal inoculum, sown and evaluated for endophytic colonization. Fungus-treated plants were challenge-inoculated with SCMV and/or MCMV to assess the effects of fungal isolates on the viruses in terms of incidence, severity and virus titers over time. Isolates of Trichoderma harzianum, Trichoderma atroviride and Hypocrea lixii colonized different plant sections. All plants singly or dually-inoculated with SCMV and MCMV tested positive for the viruses by reverse transcription-polymerase chain reaction (RT-PCR). Maize plants inoculated by T. harzianum and Metarhizium. anisopliae resulted in up to 1.4 and 2.7-fold reduced SCMV severity and titer levels, respectively, over the controls but had no significant effect on MCMV. The results show that both T. harzianum and M. anisopliae are potential candidates for inducing resistance against SCMV and can be used for the integrated management of MLN.

6.
Insects ; 6(1): 279-96, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26463079

RESUMO

Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an important pest of vegetable crops worldwide and has developed resistance to many insecticides. The predatory mites Neoseiulus (=Amblyseius) cucumeris (Oudemans), the entomopathogenic fungus Metarhizium anisopliae (Metsch.), and an insecticide (imidacloprid) were tested for their efficacy to reduce WFT population density and damage to French bean (Phaseolus vulgaris L.) pods under field conditions in two planting periods. Metarhizium anisopliae was applied as a foliar spray weekly at a rate of one litre spray volume per plot while imidacloprid was applied as a soil drench every two weeks at a rate of two litres of a mixture of water and imidacloprid per m². Neoseiulus cucumeris was released every two weeks on plant foliage at a rate of three mites per plant. Single and combined treatment applications reduced WFT population density by at least three times and WFT damage to French bean pods by at least 1.7 times compared with untreated plots. The benefit-cost ratios in management of WFT were profitable with highest returns realized on imidacloprid treated plots. The results indicate that M. anisopliae, N. cucumeris, and imidacloprid have the potential for use in developing an integrated pest management program against WFT on French beans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA