Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 60(1): 3544-3556, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695253

RESUMO

Empathetic relationships and the social transference of behaviours have been shown to occur in humans, and more recently through the development of rodent models, where both fear and pain phenotypes develop in observer animals. Clinically, observing traumatic events can induce 'trauma and stressor-related disorders' as defined in the DSM 5. These disorders are often comorbid with pain and gastrointestinal disturbances; however, our understanding of how gastrointestinal - or visceral - pain can be vicariously transmitted is lacking. Visceral pain originates from the internal organs, and despite its widespread prevalence, remains poorly understood. We established an observation paradigm to assess the impact of witnessing visceral pain. We utilised colorectal distension (CRD) to induce visceral pain behaviours in a stimulus rodent while the observer rodent observed. Twenty four hours post-observation, the observer rodent's visceral sensitivity was assessed using CRD. The observer rodents were found to have significant hyperalgesia as determined by lower visceral pain threshold and higher number of total pain behaviours compared with controls. The behaviours of the observer animals during the observation were found to be correlated with the behaviours of the stimulus animal employed. We found that observer animals had hypoactivity of the hypothalamic-pituitary-adrenal (HPA) axis, highlighted by reduced corticosterone at 90 minutes post-CRD. Using c-Fos immunohistochemistry we showed that observer animals also had increased activation of the anterior cingulate cortex, and decreased activation of the paraventricular nucleus, compared with controls. These results suggest that witnessing another animal in pain produces a behavioural phenotype and impacts the brain-gut axis.


Assuntos
Modelos Animais de Doenças , Estresse Psicológico , Dor Visceral , Animais , Masculino , Dor Visceral/fisiopatologia , Dor Visceral/psicologia , Ratos , Estresse Psicológico/fisiopatologia , Ratos Sprague-Dawley , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistema Hipotálamo-Hipofisário/metabolismo , Hiperalgesia/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Limiar da Dor/fisiologia
2.
Nutr Neurosci ; : 1-23, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781488

RESUMO

Pregnancy is a transformative period marked by profound physical and emotional changes, with far-reaching consequences for both mother and child. Emerging research has illustrated the pivotal role of a mother's diet during pregnancy in influencing the prenatal gut microbiome and subsequently shaping the neurodevelopment of her offspring. The intricate interplay between maternal gut health, nutrition, and neurodevelopmental outcomes has emerged as a captivating field of investigation within developmental science. Acting as a dynamic bridge between mother and fetus, the maternal gut microbiome, directly and indirectly, impacts the offspring's neurodevelopment through diverse pathways. This comprehensive review delves into a spectrum of studies, clarifying putative mechanisms through which maternal nutrition, by modulating the gut microbiota, orchestrates the early stages of brain development. Drawing insights from animal models and human cohorts, this work underscores the profound implications of maternal gut health for neurodevelopmental trajectories and offers a glimpse into the formulation of targeted interventions able to optimize the health of both mother and offspring. The prospect of tailored dietary recommendations for expectant mothers emerges as a promising and accessible intervention to foster the growth of beneficial gut bacteria, potentially leading to enhanced cognitive outcomes and reduced risks of neurodevelopmental disorders.

3.
J Neurochem ; 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36906887

RESUMO

Visceral hypersensitivity, a hallmark of disorders of the gut-brain axis, is associated with exposure to early-life stress (ELS). Activation of neuronal ß3-adrenoceptors (AR) has been shown to alter central and peripheral levels of tryptophan and reduce visceral hypersensitivity. In this study, we aimed to determine the potential of a ß3-AR agonist in reducing ELS-induced visceral hypersensitivity and possible underlying mechanisms. Here, ELS was induced using the maternal separation (MS) model, where Sprague Dawley rat pups were separated from their mother in early life (postnatal day 2-12). Visceral hypersensitivity was confirmed in adult offspring using colorectal distension (CRD). CL-316243, a ß3-AR agonist, was administered to determine anti-nociceptive effects against CRD. Distension-induced enteric neuronal activation as well as colonic secretomotor function were assessed. Tryptophan metabolism was determined both centrally and peripherally. For the first time, we showed that CL-316243 significantly ameliorated MS-induced visceral hypersensitivity. Furthermore, MS altered plasma tryptophan metabolism and colonic adrenergic tone, while CL-316243 reduced both central and peripheral levels of tryptophan and affected secretomotor activity in the presence of tetrodotoxin. This study supports the beneficial role of CL-316243 in reducing ELS-induced visceral hypersensitivity, and suggests that targeting the ß3-AR can significantly influence gut-brain axis activity through modulation of enteric neuronal activation, tryptophan metabolism, and colonic secretomotor activity which may synergistically contribute to offsetting the effects of ELS.

4.
Dev Psychopathol ; : 1-16, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37974473

RESUMO

BACKGROUND: Studies indicate that gut microbiota is related to neurodevelopmental and behavioral outcomes. Accordingly, early gut microbiota composition (GMC) has been linked to child temperament, but research is still scarce. The aim of this study was to examine how early GMC at 2.5 months is associated with child negative and fear reactivity at 8 and 12 months since they are potentially important intermediate phenotypes of later child psychiatric disorders. METHODS: Our study population was 330 infants enrolled in the longitudinal FinnBrain Birth Cohort Study. Gut microbiota composition was analyzed using stool sample 16s rRNA sequencing. Negative and fear reactivity were assessed using the Laboratory Temperament Assessment Battery (Lab-TAB) at child's age of 8 months (n =150) and the Infant Behavior Questionnaire-Revised Short Form (IBQ-R SF) at child's age of 12 months (n = 276). CONCLUSIONS: We found a positive association between alpha diversity and reported fear reactivity and differing microbial community composition based on negative reactivity for boys. Isobutyric acid correlated with observed negative reactivity, however, this association attenuated in the linear model. Several genera were associated with the selected infant temperament traits. This study adds to the growing literature on links between infant gut microbiota and temperament informing future mechanistic studies.

5.
Brain Behav Immun ; 99: 317-326, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758380

RESUMO

BACKGROUND: The tryptophan-kynurenine pathway is of major interest in psychiatry and is altered in patients with depression, schizophrenia and panic disorder. Stress and immune alterations can impact this system, through cortisol- and cytokine-induced activation. In addition, there is emerging evidence that the kynurenine pathway is associated with suicidality. There have been no studies to date exploring the immune-kynurenine system in social anxiety disorder (SAD), and indeed very limited human studies on the kynurenine pathway in any clinical anxiety disorder. METHODS: We investigated plasma levels of several kynurenine pathway markers, including kynurenine (KYN), tryptophan (TRYP) and kynurenic acid (KYNA), along with the KYN/TRYP and KYNA/KYN ratios, in a cohort of 32 patients with SAD and 36 healthy controls. We also investigated a broad array of both basal and lipopolysaccharide (LPS)-stimulated blood cytokine levels including IFN-γ, interleukin (IL)-10, IL-1ß, IL-2, IL-4, IL-6, IL-8 and tumor necrosis factor (TNF)-α. RESULTS: SAD patients had elevated plasma KYNA levels and an increased KYNA/KYN ratio compared to healthy controls. No differences in KYN, TRYP or the KYN/TRYP ratio were seen between the two groups. SAD patients with a history of past suicide attempt showed elevated plasma KYN levels and a higher KYN/TRYP ratio compared to patients without a history of suicide attempt. No differences were seen in basal or LPS-stimulated pro-inflammatory cytokine levels between the patients and controls. However, unstimulated IL-10, an anti-inflammatory cytokine, was significantly lower in the SAD group. A significant sex influence was evident with SAD males having lower levels of IL-10 compared to healthy males but no difference seen between SAD females and healthy females. CONCLUSIONS: The peripheral kynurenine pathway is altered in SAD and preferentially directed towards KYNA synthesis. Additionally, kynurenine pathway activation, as evidenced by elevated KYN and KYN/TRYP ratio, is evident in SAD patients with a history of past suicide attempt. While no differences in pro-inflammatory cytokines is apparent in SAD patients, lower anti-inflammatory IL-10 levels are seen in SAD males. Further investigation of the role of the immune-kynurenine pathway in SAD and other clinical anxiety disorders is warranted.


Assuntos
Fobia Social , Esquizofrenia , Feminino , Humanos , Ácido Cinurênico , Cinurenina/metabolismo , Masculino , Triptofano
6.
Brain Behav Immun ; 99: 327-338, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34732365

RESUMO

Stress during critical periods of neurodevelopment is associated with an increased risk of developing stress-related psychiatric disorders, which are more common in women than men. Hippocampal neurogenesis (the birth of new neurons) is vulnerable to maternal separation (MS) and inflammatory stressors, and emerging evidence suggests that hippocampal neurogenesis is more sensitive to stress in the ventral hippocampus (vHi) than in the dorsal hippocampus (dHi). Although research into the effects of MS stress on hippocampal neurogenesis is well documented in male rodents, the effect in females remains underexplored. Similarly, reports on the impact of inflammatory stressors on hippocampal neurogenesis in females are limited, especially when female bias in the prevalence of stress-related psychiatric disorders begins to emerge. Thus, in this study we investigated the effects of MS followed by an inflammatory stressor (lipopolysaccharide, LPS) in early adolescence on peripheral and hippocampal inflammatory responses and hippocampal neurogenesis in juvenile female rats. We show that MS enhanced an LPS-induced increase in the pro-inflammatory cytokine IL-1ß in the vHi but not in the dHi. However, microglial activation was similar following LPS alone or MS alone in both hippocampal regions, while MS prior to LPS reduced microglial activation in both dHi and vHi. The production of new neurons was unaffected by MS and LPS. MS and LPS independently reduced the dendritic complexity of new neurons, and MS exacerbated LPS-induced reductions in the complexity of distal dendrites of new neurons in the vHi but not dHi. These data highlight that MS differentially primes the physiological response to LPS in the juvenile female rat hippocampus.


Assuntos
Privação Materna , Doenças Neuroinflamatórias , Animais , Feminino , Hipocampo , Lipopolissacarídeos/farmacologia , Masculino , Microglia , Neurogênese/fisiologia , Neurônios , Ratos
7.
Brain Behav Immun ; 104: 191-204, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35688340

RESUMO

BACKGROUND AND AIM: Relative to men, women present with pain conditions more commonly. Although consistent differences exist between men and women in terms of physiological pain sensitivity, the underlying mechanisms are incompletely understood and yet could inform the development of effective sex specific treatments for pain. The gut microbiota can modulate nervous system functioning, including pain signaling pathways. We hypothesized that the gut microbiota and critical components of the gut-brain axis might influence electrical pain thresholds. Further, we hypothesized that sex, menstrual cycle, and hormonal contraceptive use might account for inter-sex differences in pain perception. METHODS: Healthy, non-obese males (N = 15) and females (N = 16), (nine of whom were using hormonal contraceptives), were recruited. Male subjects were invited to undergo testing once, whereas females were invited three times across the menstrual cycle, based on self-reported early follicular (EF), late follicular (LF), or mid-luteal (ML) phase. On test days, electrical stimulation on the right ankle was performed; salivary cortisol levels were measured in the morning; levels of lipopolysaccharide-binding protein (LBP), soluble CD14 (sCD14), pro-inflammatory cytokines were assessed in plasma, and microbiota composition and short-chain fatty acids (SCFAs) levels were determined in fecal samples. RESULTS: We observed that the pain tolerance threshold/pain sensation threshold (PTT/PST) ratio was significantly lesser in women than men, but not PST or PTT alone. Further, hormonal contraceptive use was associated with increased LBP levels (LF & ML phase), whilst sCD14 levels or inflammatory cytokines were not affected. Interestingly, in women, hormonal contraceptive use was associated with an increase in the relative abundance of Erysipelatoclostridium, and the relative abundances of certain bacterial genera correlated positively with pain sensation thresholds (Prevotella and Megasphera) during the LF phase and cortisol awakening response (Anaerofustis) during the ML phase. In comparison with men, women displayed overall stronger associations between i) SCFAs data, ii) cortisol data, iii) inflammatory cytokines and PTT and PST. DISCUSSION AND CONCLUSION: Our findings support the hypothesis that the gut microbiota may be one of the factors determining the physiological inter-sex differences in pain perception. Further research is needed to investigate the molecular mechanisms by which specific sex hormones and gut microbes modulate pain signaling pathways, but this study highlights the possibilities for innovative individual targeted therapies for pain management.

8.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34830433

RESUMO

Steroid hormones are essential biomolecules for human physiology as they modulate the endocrine system, nervous function and behaviour. Recent studies have shown that the gut microbiota is directly involved in the production and metabolism of steroid hormones in the periphery. However, the influence of the gut microbiota on levels of steroids acting and present in the brain (i.e., neuroactive steroids) is not fully understood. Therefore, using liquid chromatography-tandem mass spectrometry, we assessed the levels of several neuroactive steroids in various brain areas and the plasma of germ-free (GF) male mice and conventionally colonized controls. The data obtained indicate an increase in allopregnanolone levels associated with a decrease in those of 5α-androstane-3α, 17ß-diol (3α-diol) in the plasma of GF mice. Moreover, an increase of dihydroprogesterone and isoallopregnanolone in the hippocampus, cerebellum, and cerebral cortex was also reported. Changes in dihydrotestosterone and 3α-diol levels were also observed in the hippocampus of GF mice. In addition, an increase in dehydroepiandrosterone was associated with a decrease in testosterone levels in the hypothalamus of GF mice. Our findings suggest that the absence of microbes affects the neuroactive steroids in the periphery and the brain, supporting the evidence of a microbiota-mediated modulation of neuroendocrine pathways involved in preserving host brain functioning.


Assuntos
Encéfalo/metabolismo , Microbioma Gastrointestinal/genética , Hormônios Esteroides Gonadais/genética , Microbiota/genética , Neuroesteroides/metabolismo , Androstano-3,17-diol/análogos & derivados , Androstano-3,17-diol/sangue , Animais , Cromatografia , Di-Hidrotestosterona/sangue , Células Germinativas/metabolismo , Hormônios Esteroides Gonadais/sangue , Masculino , Camundongos , Neuroesteroides/sangue , Pregnanolona/sangue , Pregnanolona/metabolismo , Espectrometria de Massas em Tandem , Testosterona/metabolismo
9.
Eur J Neurosci ; 51(4): 1042-1058, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31339598

RESUMO

Nutritional interventions targeting the microbiota-gut-brain axis are proposed to modulate stress-induced dysfunction of physiological processes and brain development. Maternal separation (MS) in rats induces long-term alterations to behaviour, pain responses, gut microbiome and brain neurochemistry. In this study, the effects of dietary interventions (milk fat globule membrane [MFGM] and a polydextrose/galacto-oligosaccharide prebiotic blend) were evaluated. Diets were provided from postnatal day 21 to both non-separated and MS offspring. Spatial memory, visceral sensitivity and stress reactivity were assessed in adulthood. Gene transcripts associated with cognition and stress and the caecal microbiota composition were analysed. MS-induced visceral hypersensitivity was ameliorated by MFGM and to greater extent with the combination of MFGM and prebiotic blend. Furthermore, spatial learning and memory were improved by prebiotics and MFGM alone and with the combination. The prebiotic blend and the combination of the prebiotics and MFGM appeared to facilitate return to baseline with regard to HPA axis response to the restraint stress, which can be beneficial in times where coping mechanisms to stressful events are required. Interestingly, the combination of MFGM and prebiotic reduced the long-term impact of MS on a marker of myelination in the prefrontal cortex. MS affected the microbiota at family level only, while MFGM, the prebiotic blend and the combination influenced abundance at family and genus level as well as influencing beta-diversity levels. In conclusion, intervention with MFGM and prebiotic blend significantly impacted the composition of the microbiota as well as ameliorating some of the long-term effects of early-life stress.


Assuntos
Microbioma Gastrointestinal , Privação Materna , Microbiota , Animais , Encéfalo , Glicolipídeos , Glicoproteínas , Sistema Hipotálamo-Hipofisário , Gotículas Lipídicas , Sistema Hipófise-Suprarrenal , Prebióticos , Ratos , Estresse Fisiológico
10.
Nutr Neurosci ; 22(6): 425-434, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29173065

RESUMO

Early life is a period of significant brain development when the brain is at its most plastic and vulnerable. Stressful episodes during this window of development have long-lasting effects on the central nervous system. Rodent maternal separation (MS) is a reliable model of early-life stress and induces alterations in both physiology and behaviour. Intriguingly, the gut microbiota of MS offspring differ from that of non-separated offspring, suggesting a mechanistic role for the microbiota-gut-brain axis. Hence, we tested whether dietary factors known to affect the gut microbiota alter the neurobehavioural effects of MS. The impact of consuming diet containing prebiotics polydextrose (PDX) and galactooligosaccharide (GOS) alone or in combination with live bacteria Lactobacillus rhamnosus GG (LGG) from weaning onwards in rats subjected to early-life MS was assessed. Adult offspring were assessed for anxiety-like behaviour in the open field test, spatial memory using the Morris water maze, and reactivity to restraint stress. Brains were examined via PCR for changes in mRNA gene expression. Here, we demonstrate that diets containing a combination of PDX/GOS and LGG attenuates the effects of early-life MS on anxiety-like behaviour and hippocampal-dependent learning with changes to hippocampal mRNA expression of genes related to stress circuitry, anxiety and learning.


Assuntos
Comportamento Animal , Glucanos/administração & dosagem , Lacticaseibacillus rhamnosus , Privação Materna , Oligossacarídeos/administração & dosagem , Prebióticos/administração & dosagem , Estresse Psicológico/microbiologia , Animais , Ansiedade/microbiologia , Comportamento Exploratório , Feminino , Hipocampo/metabolismo , Hipocampo/microbiologia , Masculino , Probióticos/administração & dosagem , Ratos Sprague-Dawley , Memória Espacial
11.
Ann Nutr Metab ; 74 Suppl 2: 16-27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31234188

RESUMO

Pregnancy and early life are characterized by marked changes in body microbial composition. Intriguingly, these changes take place simultaneously with neurodevelopmental plasticity, suggesting a complex dialogue between the microbes that inhabit the gastrointestinal tract and the brain. The purpose of this chapter is to describe the natural trajectory of microbiota during pregnancy and early life, as well as review the literature available on its interaction with neurodevelopment. Several lines of evidence show that the gut microbiota interacts with diet, drugs and stress both prenatally and postnatally. Clinical and preclinical studies are illuminating how these disruptions result in different developmental outcomes. Understanding the role of the microbiota in neurodevelopment may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.


Assuntos
Encéfalo/crescimento & desenvolvimento , Dieta , Recém-Nascido , Mães , Feminino , Microbioma Gastrointestinal , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente , Gravidez , Cuidado Pré-Natal , Fenômenos Fisiológicos da Nutrição Pré-Natal
12.
Brain Behav Immun ; 68: 261-273, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29104061

RESUMO

Early-life stress is an established risk for the development of psychiatric disorders. Post-weaning isolation rearing of rats produces lasting developmental changes in behavior and brain function that may have translational pathophysiological relevance to alterations seen in schizophrenia, but the underlying mechanisms are unclear. Accumulating evidence supports the premise that gut microbiota influence brain development and function by affecting inflammatory mediators, the hypothalamic-pituitaryadrenal axis and neurotransmission, but there is little knowledge of whether the microbiota-gut-brain axis might contribute to the development of schizophrenia-related behaviors. To this end the effects of social isolation (SI; a well-validated animal model for schizophrenia)-induced changes in rat behavior were correlated with alterations in gut microbiota, hippocampal neurogenesis and brain cytokine levels. Twenty-four male Lister hooded rats were housed in social groups (group-housed, GH, 3 littermates per cage) or alone (SI) from weaning (post-natal day 24) for four weeks before recording open field exploration, locomotor activity/novel object discrimination (NOD), elevated plus maze, conditioned freezing response (CFR) and restraint stress at one week intervals. Post-mortem caecal microbiota composition, cortical and hippocampal cytokines and neurogenesis were correlated to indices of behavioral changes. SI rats were hyperactive in the open field and locomotor activity chambers traveling further than GH controls in the less aversive peripheral zone. While SI rats showed few alterations in plus maze or NOD they froze for significantly less time than GH following conditioning in the CFR paradigm, consistent with impaired associative learning and memory. SI rats had significantly fewer BrdU/NeuN positive cells in the dentate gyrus than GH controls. SI rats had altered microbiota composition with increases in Actinobacteria and decreases in the class Clostridia compared to GH controls. Differences were also noted at genus level. Positive correlations were seen between microbiota, hippocampal IL-6 and IL-10, conditioned freezing and open field exploration. Adverse early-life stress resulting from continuous SI increased several indices of 'anxiety-like' behavior and impaired associative learning and memory accompanied by changes to gut microbiota, reduced hippocampal IL-6, IL-10 and neurogenesis. This study suggests that early-life stress may produce long-lasting changes in gut microbiota contributing to development of abnormal neuronal and endocrine function and behavior which could play a pivotal role in the aetiology of psychiatric illness.


Assuntos
Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiologia , Isolamento Social , Animais , Ansiedade , Comportamento Animal/efeitos dos fármacos , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Imunidade/fisiologia , Interleucina-10 , Interleucina-6 , Aprendizagem , Masculino , Memória , Atividade Motora/efeitos dos fármacos , Neurogênese , Ratos , Esquizofrenia/fisiopatologia , Comportamento Social , Desmame
13.
Brain Behav Immun ; 63: 21-34, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27266391

RESUMO

The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring.


Assuntos
Atividade Motora/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/fisiologia , Feminino , Idade Gestacional , Inflamação/imunologia , Masculino , Atividade Motora/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley/imunologia , Recompensa , Substância Negra/imunologia , Substância Negra/metabolismo , Área Tegmentar Ventral/imunologia , Área Tegmentar Ventral/metabolismo
14.
Handb Exp Pharmacol ; 239: 269-287, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28035535

RESUMO

A growing body of preclinical and clinical evidence supports a relationship between the complexity and diversity of the microorganisms that inhabit our gut (human gastrointestinal microbiota) and health status. Under normal homeostatic conditions this microbial population helps maintain intestinal peristalsis, mucosal integrity, pH balance, immune priming and protection against invading pathogens. Furthermore, these microbes can influence centrally regulated emotional behaviour through mechanisms including microbially derived bioactive molecules (amino acid metabolites, short-chain fatty acids, neuropeptides and neurotransmitters), mucosal immune and enteroendocrine cell activation, as well as vagal nerve stimulation.The microbiota-gut-brain axis comprises a dynamic matrix of tissues and organs including the brain, autonomic nervous system, glands, gut, immune cells and gastrointestinal microbiota that communicate in a complex multidirectional manner to maintain homeostasis and resist perturbation to the system. Changes to the microbial environment, as a consequence of illness, stress or injury, can lead to a broad spectrum of physiological and behavioural effects locally including a decrease in gut barrier integrity, altered gut motility, inflammatory mediator release as well as nociceptive and distension receptor sensitisation. Centrally mediated events including hypothalamic-pituitary-adrenal (HPA) axis, neuroinflammatory events and neurotransmitter systems are concomitantly altered. Thus, both central and peripheral pathways associated with pain manifestation and perception are altered as a consequence of the microbiota-gut-brain axis imbalance.In this chapter the involvement of the gastrointestinal microbiota in visceral pain is reviewed. We focus on the anatomical and physiological nodes whereby microbiota may be mediating pain response, and address the potential for manipulating gastrointestinal microbiota as a therapeutic target for visceral pain.


Assuntos
Dor Abdominal/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/inervação , Trato Gastrointestinal/microbiologia , Dor Visceral/microbiologia , Dor Visceral/fisiopatologia , Dor Abdominal/fisiopatologia , Dor Abdominal/terapia , Animais , Encéfalo/fisiopatologia , Interações Hospedeiro-Patógeno , Humanos , Vias Neurais/microbiologia , Vias Neurais/fisiopatologia , Percepção da Dor , Limiar da Dor , Probióticos/uso terapêutico , Dor Visceral/terapia
15.
Handb Exp Pharmacol ; 239: 219-246, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28233180

RESUMO

Irritable bowel syndrome is a functional gastrointestinal disorder, with stress playing a major role in onset and exacerbation of symptoms such as abdominal pain and altered bowel movements. Stress-related disorders including anxiety and depression often precede the development of irritable bowel syndrome and vice versa. Stressor exposure during early life has the potential to increase an individual's susceptibility to both irritable bowel syndrome and psychiatric disease indicating that there may be a common origin for these disorders. Moreover, adverse early life events significantly impact upon many of the communication pathways within the brain-gut-microbiota axis, which allows bidirectional interaction between the central nervous system and the gastrointestinal tract. This axis is proposed to be perturbed in irritable bowel syndrome and studies now indicate that dysfunction of this axis is also seen in psychiatric disease. Here we review the co-morbidity of irritable bowel syndrome and psychiatric disease with their common origin in mind in relation to the impact of early life stress on the developing brain-gut-microbiota axis. We also discuss the therapeutic potential of targeting this axis in these diseases.


Assuntos
Sistema Nervoso Entérico/fisiopatologia , Intestinos/inervação , Síndrome do Intestino Irritável/psicologia , Estresse Psicológico/psicologia , Fatores Etários , Animais , Encéfalo/fisiopatologia , Comorbidade , Microbioma Gastrointestinal , Nível de Saúde , Interações Hospedeiro-Patógeno , Humanos , Intestinos/microbiologia , Síndrome do Intestino Irritável/epidemiologia , Síndrome do Intestino Irritável/fisiopatologia , Síndrome do Intestino Irritável/terapia , Prognóstico , Fatores de Risco , Estresse Psicológico/epidemiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/terapia
16.
Birth Defects Res C Embryo Today ; 105(4): 296-313, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26706413

RESUMO

Many childhood diseases such as autism spectrum disorders, allergic disease, and obesity are on the increase. Although environmental factors are thought to play a role in this increase. The mechanisms at play are unclear but increasing evidence points to an interaction with the gastrointestinal microbiota as being potentially important. Recently this community of bacteria and perturbation of its colonization in early life has been linked to a number of diseases. Many factors are capable of influencing this colonization and ultimately leading to an altered gut microbiota which is known to affect key systems within the body. The impact of the microbial composition of our gastrointestinal tract on systems outside the gut is also becoming apparent. Here we highlight the factors that are capable of impacting on microbiota colonization in early-life and the developing systems that are affected and finally how this may be involved in the manifestation of childhood diseases.


Assuntos
Encefalopatias/microbiologia , Gastroenteropatias/microbiologia , Microbiota/fisiologia , Criança , Humanos
17.
Clin Anat ; 28(6): 725-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26118424

RESUMO

Anatomy is the cornerstone of education for healthcare professionals with the use of human material providing an excellent teaching tool in the modern curricula. The ability and quality of preservation of human remains has enabled such use. The introduction of formaldehyde as a preservative in 1893 was an important step in the history of preservation. With the European Union directive on the use of formaldehyde and its expected banning, anatomists are trying to find a more convenient and safe substitute. In this review, we compare the different techniques used based on the need for embalming, fixative used, period of preservation and the features of the embalmed specimen. The fact that embalming is used in different disciplines, multiple purposes and described in different languages has led to the development of ambiguous interchangeable terminology. Overall, there is a lack of information specifically classifying, listing and comparing different embalming techniques, and this may be due to the fact that no internationally recognized experimental standards are adhered to in this field. Anatomists strive to find an embalming technique that allows the preserved specimen to accurately resemble the living tissue, preserve the body for a long period of time and reduces health risk concerns related to working with cadavers. There is a need for embalming to shift to an independent modern day science with well-founded research at the heart of it. While this may take time and agreement across nations, we feel that this review adds to the literature to provide a variety of different methods that can be employed for human tissue preservation depending on the desired outcome.


Assuntos
Anatomia/educação , Dissecação/educação , Educação Médica/métodos , Embalsamamento/métodos , Cadáver , Humanos
18.
Exp Physiol ; 99(2): 359-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24243837

RESUMO

NEW FINDINGS: What is the central question of this study? Does stress sensitivity and susceptibility to inflammation innate to certain rat strains make them vulnerable to bowel dysfunction? What is the main finding and its importance? Of four different rat strains, the Lewis rat, which displays both susceptibility to gastrointestinal inflammation and sensitivity to stress, exhibits the most aberrant gastrointestinal morphology and visceral pain sensitivity. Given the similarities to human functional bowel disorders, such as irritable bowel syndrome, this may make it a good model of this disease. Irritable bowel syndrome is a common, debilitating gastrointestinal (GI) disorder characterized by episodic exacerbations of symptoms such as abdominal pain, bloating and altered bowel habit. Contributory factors for the development of irritable bowel syndrome include genetics, childhood trauma and prior GI infection leading to chronic low-grade inflammation or immune activation. Additional considerations in comprehending the chronic relapsing pattern that typifies irritable bowel syndrome symptoms are the effects of both psychosocial and infection-related stresses. Background stress and immune profiles can influence gut permeability and visceral pain sensitivity. This study examined whether innate susceptibility to inflammation and stress sensitivity in four rat strains is associated with bowel dysfunction. The pain threshold to colorectal distension was assessed in Lewis, Fischer (F344) and spontaneously hypertensive rats and compared with Sprague-Dawley control animals. Colons were subsequently excised and morphologically assessed for total length, goblet cell hyperplasia and muscle and mucosal thickness. Lewis rats displayed visceral hypersensitivity compared with other strains. At a morphological level, the gastrointestinal tract from these rats displayed mucosal goblet cell hyperplasia and alterations in muscle layer thickness. The Lewis rat strain, which is reported to have increased susceptibility to GI inflammation in addition to stress sensitivity, had the most prominent features of physiological and morphological GI dysfunction. These data support the hypothesis that background strain is a key factor in the development and exacerbation of bowel dysfunction in rodent models.


Assuntos
Colo/fisiopatologia , Limiar da Dor/fisiologia , Dor Visceral/fisiopatologia , Animais , Células Caliciformes/fisiologia , Hiperplasia/fisiopatologia , Inflamação/fisiopatologia , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Músculos/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Estresse Psicológico/fisiopatologia
19.
Front Cell Infect Microbiol ; 14: 1352267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774629

RESUMO

Hypertensive disorders of pregnancy, including pre-eclampsia, are a leading cause of serious and debilitating complications that affect both the mother and the fetus. Despite the occurrence and the health implications of these disorders there is still relatively limited evidence on the molecular underpinnings of the pathophysiology. An area that has come to the fore with regard to its influence on health and disease is the microbiome. While there are several microbiome niches on and within the body, the distal end of the gut harbors the largest of these impacting on many different systems of the body including the central nervous system, the immune system, and the reproductive system. While the role of the microbiome in hypertensive disorders, including pre-eclampsia, has not been fully elucidated some studies have indicated that several of the symptoms of these disorders are linked to an altered gut microbiome. In this review, we examine both pre-eclampsia and microbiome literature to summarize the current knowledge on whether the microbiome drives the symptoms of pre-eclampsia or if the aberrant microbiome is a consequence of this condition. Despite the paucity of studies, obvious gut microbiome changes have been noted in women with pre-eclampsia and the individual symptoms associated with the condition. Yet further research is required to fully elucidate the role of the microbiome and the significance it plays in the development of the symptoms. Regardless of this, the literature highlights the potential for a microbiome targeted intervention such as dietary changes or prebiotic and probiotics to reduce the impact of some aspects of these disorders.


Assuntos
Microbioma Gastrointestinal , Pré-Eclâmpsia , Pré-Eclâmpsia/microbiologia , Humanos , Gravidez , Feminino , Disbiose/microbiologia , Probióticos , Animais
20.
Sci Rep ; 14(1): 12401, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811609

RESUMO

Persistent post-surgical pain (PPSP) is defined as pain which continues after a surgical operation in a significant form for at least three months (and is not related to pre-existing painful conditions). PPSP is a common, under-recognised, and important clinical problem which affects millions of patients worldwide. Preventative measures which are currently available include the selection of a minimally invasive surgical technique and an aggressive multimodal perioperative analgesic regimen. More recently, a role for the gut microbiota in pain modulation has become increasingly apparent. This study aims to investigate any relationship between the gut microbiota and PPSP. A prospective observational study of 68 female adult patients undergoing surgery for management of breast cancer was carried out. Stool samples from 45 of these patients were obtained to analyse the composition of the gut microbiota. Measures of pain and state-trait anxiety were also taken to investigate further dimensions in any relationship between the gut microbiota and PPSP. At 12 weeks postoperatively, 21 patients (51.2%) did not have any pain and 20 patients (48.8%) reported feeling pain that persisted at that time. Analysis of the gut microbiota revealed significantly lower alpha diversity (using three measures) in those patients reporting severe pain at the 60 min post-operative and the 12 weeks post-operative timepoints. A cluster of taxa represented by Bifidobacterium longum, and Faecalibacterium prausnitzii was closely associated with those individuals reporting no pain at 12 weeks postoperatively, while Megamonas hypermegale, Bacteroides pectinophilus, Ruminococcus bromii, and Roseburia hominis clustered relatively closely in the group of patients fulfilling the criteria for persistent post-operative pain. We report for the first time specific associations between the gut microbiota composition and the presence or absence of PPSP. This may provide further insights into mechanisms behind the role of the gut microbiota in the development of PPSP and could inform future treatment strategies.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Dor Pós-Operatória , Humanos , Feminino , Neoplasias da Mama/cirurgia , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/microbiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto , Idoso , Fezes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA