Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 82, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570852

RESUMO

Cranial irradiation causes cognitive deficits that are in part mediated by microglia, the resident immune cells of the brain. Microglia are highly reactive, exhibiting changes in shape and morphology depending on the function they are performing. Additionally, microglia processes make dynamic, physical contacts with different components of their environment to monitor the functional state of the brain and promote plasticity. Though evidence suggests radiation perturbs homeostatic microglia functions, it is unknown how cranial irradiation impacts the dynamic behavior of microglia over time. Here, we paired in vivo two-photon microscopy with a transgenic mouse model that labels cortical microglia to follow these cells and determine how they change over time in cranial irradiated mice and their control littermates. We show that a single dose of 10 Gy cranial irradiation disrupts homeostatic cortical microglia dynamics during a 1-month time course. We found a lasting loss of microglial cells following cranial irradiation, coupled with a modest dysregulation of microglial soma displacement at earlier timepoints. The homogeneous distribution of microglia was maintained, suggesting microglia rearrange themselves to account for cell loss and maintain territorial organization following cranial irradiation. Furthermore, we found cranial irradiation reduced microglia coverage of the parenchyma and their surveillance capacity, without overtly changing morphology. Our results demonstrate that a single dose of radiation can induce changes in microglial behavior and function that could influence neurological health. These results set the foundation for future work examining how cranial irradiation impacts complex cellular dynamics in the brain which could contribute to the manifestation of cognitive deficits.


Assuntos
Encéfalo , Microglia , Camundongos , Animais , Microglia/efeitos da radiação , Camundongos Transgênicos , Modelos Animais de Doenças , Irradiação Craniana/efeitos adversos
2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835027

RESUMO

Whole-body exposure to high-energy particle radiation remains an unmitigated hazard to human health in space. Ongoing experiments at the NASA Space Radiation Laboratory and elsewhere repeatedly show persistent changes in brain function long after exposure to simulations of this unique radiation environment, although, as is also the case with proton radiotherapy sequelae, how this occurs and especially how it interacts with common comorbidities is not well-understood. Here, we report modest differential changes in behavior and brain pathology between male and female Alzheimer's-like and wildtype littermate mice 7-8 months after exposure to 0, 0.5, or 2 Gy of 1 GeV proton radiation. The mice were examined with a battery of behavior tests and assayed for amyloid beta pathology, synaptic markers, microbleeds, microglial reactivity, and plasma cytokines. In general, the Alzheimer's model mice were more prone than their wildtype littermates to radiation-induced behavior changes, and hippocampal staining for amyloid beta pathology and microglial activation in these mice revealed a dose-dependent reduction in males but not in females. In summary, radiation-induced, long-term changes in behavior and pathology, although modest, appear specific to both sex and the underlying disease state.


Assuntos
Doença de Alzheimer , Masculino , Camundongos , Feminino , Humanos , Animais , Doença de Alzheimer/patologia , Prótons , Peptídeos beta-Amiloides/metabolismo , Relação Dose-Resposta à Radiação , Hipocampo/metabolismo , Mutação , Camundongos Transgênicos
3.
J Neuroinflammation ; 19(1): 173, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787714

RESUMO

BACKGROUND: Adult microglia rely on self-renewal through division to repopulate and sustain their numbers. However, with aging, microglia display morphological and transcriptional changes that reflect a heightened state of neuroinflammation. This state threatens aging neurons and other cells and can influence the progression of Alzheimer's disease (AD). In this study, we sought to determine whether renewing microglia through a forced partial depletion/repopulation method could attenuate AD pathology in the 3xTg and APP/PS1 mouse models. METHODS: We pharmacologically depleted the microglia of two cohorts of 21- to 22-month-old 3xTg mice and one cohort of 14-month-old APP/PS1 mice using PLX5622 formulated in chow for 2 weeks. Following depletion, we returned the mice to standard chow diet for 1 month to allow microglial repopulation. We assessed the effect of depletion and repopulation on AD pathology, microglial gene expression, and surface levels of homeostatic markers on microglia using immunohistochemistry, single-cell RNAseq and flow cytometry. RESULTS: Although we did not identify a significant impact of microglial repopulation on amyloid pathology in either of the AD models, we observed differential changes in phosphorylated-Tau epitopes after repopulation in the 3xTg mice. We provide evidence that repopulated microglia in the hippocampal formation exhibited changes in the levels of homeostatic microglial markers. Lastly, we identified novel subpopulations of microglia by performing single-cell RNAseq analysis on CD45int/+ cells from hippocampi of control and repopulated 3xTg mice. In particular, one subpopulation induced after repopulation is characterized by heightened expression of Cxcl13. CONCLUSION: Overall, we found that depleting and repopulating microglia causes overexpression of microglial Cxcl13 with disparate effects on Tau and amyloid pathologies.


Assuntos
Doença de Alzheimer , Quimiocina CXCL13/metabolismo , Microglia , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Proteínas Amiloidogênicas/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Fosforilação , Placa Amiloide/patologia
4.
J Neuroinflammation ; 19(1): 38, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130912

RESUMO

BACKGROUND: Alzheimer's disease is the leading cause of dementia worldwide. TAM receptor tyrosine kinases (Tyro3, Axl, MerTK) are known for their role in engagement of phagocytosis and modulation of inflammation, and recent evidence suggests a complex relationship between Axl, Mer, and microglial phagocytosis of amyloid plaques in AD. Gas6, the primary CNS TAM ligand, reduces neuroinflammation and improves outcomes in murine models of CNS disease. Therefore, we hypothesized that AAV-mediated overexpression of Gas6 would alleviate plaque pathology, reduce neuroinflammation, and improve behavior in the APP/PS1 model of Alzheimer's disease. METHODS: Adeno-associated viral vectors were used to overexpress Gas6 in the APP/PS1 model of Alzheimer's disease. Nine-month-old male and female APP/PS1 and nontransgenic littermates received bilateral stereotactic hippocampal injections of AAV-Gas6 or AAV-control, which expresses a non-functional Gas6 protein. One month after injections, mice underwent a battery of behavioral tasks to assess cognitive function and brains were processed for immunohistochemical and transcriptional analyses. RESULTS: Gas6 overexpression reduced plaque burden in male APP/PS1 mice. However, contrary to our hypothesis, Gas6 increased pro-inflammatory microglial gene expression and worsened contextual fear conditioning compared to control-treated mice. Gas6 overexpression appeared to have no effect on phagocytic mechanisms in vitro or in vivo as measured by CD68 immunohistochemistry, microglial methoxy-04 uptake, and primary microglial uptake of fluorescent fibrillar amyloid beta. CONCLUSION: Our data describes a triad of worsened behavior, reduced plaque number, and an increase in proinflammatory signaling in a sex-specific manner. While Gas6 has historically induced anti-inflammatory signatures in the peripheral nervous system, our data suggest an alternative, proinflammatory role in the context of Alzheimer's disease pathology.


Assuntos
Doença de Alzheimer , Peptídeos e Proteínas de Sinalização Intercelular , Placa Amiloide , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Feminino , Inflamação/complicações , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/patologia , Presenilina-1/genética
5.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948098

RESUMO

Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aß) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aß and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.


Assuntos
Doença de Alzheimer , Comportamento Animal/efeitos da radiação , Raios gama , Genótipo , Radioisótopos de Ferro , Presenilina-1 , Caracteres Sexuais , Memória Espacial/efeitos da radiação , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Fatores de Tempo
6.
Am J Emerg Med ; 38(10): 2125-2129, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33069547

RESUMO

OBJECTIVE: Hyperoxia, the delivery of high levels of supplemental oxygen (sO2) despite normoxia, may increase cerebral oxygenation to penumbral tissue and improve stroke outcomes. However, it may also alter peripheral hemodynamic profiles with potential negative effects on cerebral blood flow (CBF). This study examines the hemodynamic consequences of prehospital sO2 in stroke. METHODS: A retrospective analysis of adult acute stroke patients (aged ≥18 years) presenting via EMS to an academic Comprehensive Stroke Center between January 1, 2013 and December 31, 2017 was conducted using demographic and clinical characteristics obtained from Get with the Guidelines-Stroke registry and subjects' medical records. Outcomes were compared across three groups based on prehospital oxygen saturation and sO2 administration. Chi-square, ANOVA, and multivariable linear regression were used to determine if sO2 was associated with differences in peripheral hemodynamic profiles. RESULTS: All subjects had similar initial EMS vitals except for oxygen saturation. However, both univariate and multivariable analysis revealed that hyperoxia subjects had slightly lower average ED mean arterial pressures (MAP) compared to normoxia (Cohen's d = 0.313). CONCLUSIONS: Prehospital-initiated hyperoxia for acute stroke is associated with a small, but significant decrease in average ED MAP, without changes in heart rate, compared to normoxia. While limited by the inability to link changes in peripheral hemodynamical profiles directly to changes in CBF, this study suggests that hyperoxia may result in a relative hypotension. Further studies are needed to determine if this small change in peripheral vascular resistance translates into a clinically significant reduced CBF.


Assuntos
Pressão Arterial/efeitos dos fármacos , Oxigenoterapia/normas , Acidente Vascular Cerebral/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Pressão Arterial/fisiologia , Serviço Hospitalar de Emergência/organização & administração , Feminino , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/efeitos adversos , Oxigênio/farmacologia , Oxigênio/uso terapêutico , Oxigenoterapia/métodos , Oxigenoterapia/estatística & dados numéricos , Estudos Retrospectivos , Acidente Vascular Cerebral/fisiopatologia
7.
J Neuroinflammation ; 16(1): 74, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953557

RESUMO

Neuroinflammation is considered one of the cardinal features of Alzheimer's disease (AD). Neuritic plaques composed of amyloid ß and neurofibrillary tangle-laden neurons are surrounded by reactive astrocytes and microglia. Exposure of microglia, the resident myeloid cell of the CNS, to amyloid ß causes these cells to acquire an inflammatory phenotype. While these reactive microglia are important to contain and phagocytose amyloid plaques, their activated phenotype impacts CNS homeostasis. In rodent models, increased neuroinflammation promoted by overexpression of proinflammatory cytokines can cause an increase in hyperphosphorylated tau and a decrease in hippocampal function. The peripheral immune system can also play a detrimental or beneficial role in CNS inflammation. Systemic inflammation can increase the risk of developing AD dementia, and chemokines released directly by microglia or indirectly by endothelial cells can attract monocytes and T lymphocytes to the CNS. These peripheral immune cells can aid in amyloid ß clearance or modulate microglia responses, depending on the cell type. As such, several groups have targeted the peripheral immune system to modulate chronic neuroinflammation. In this review, we focus on the interplay of immunomodulating factors and cell types that are being investigated as possible therapeutic targets for the treatment or prevention of AD.


Assuntos
Doença de Alzheimer , Citocinas/metabolismo , Microglia/fisiologia , Células Mieloides/fisiologia , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Animais , Comunicação Celular/fisiologia , Encefalite/etiologia , Humanos
8.
J Neuroinflammation ; 16(1): 261, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822279

RESUMO

BACKGROUND: Neuroinflammation is thought to contribute to the pathogenesis of Alzheimer's disease (AD), yet numerous studies have demonstrated a beneficial role for neuroinflammation in amyloid plaque clearance. We have previously shown that sustained expression of IL-1ß in the hippocampus of APP/PS1 mice decreases amyloid plaque burden independent of recruited CCR2+ myeloid cells, suggesting resident microglia as the main phagocytic effectors of IL-1ß-induced plaque clearance. To date, however, the mechanisms of IL-1ß-induced plaque clearance remain poorly understood. METHODS: To determine whether microglia are involved in IL-1ß-induced plaque clearance, APP/PS1 mice induced to express mature human IL-1ß in the hippocampus via adenoviral transduction were treated with the Aß fluorescent probe methoxy-X04 (MX04) and microglial internalization of fibrillar Aß (fAß) was analyzed by flow cytometry and immunohistochemistry. To assess microglial proliferation, APP/PS1 mice transduced with IL-1ß or control were injected intraperitoneally with BrdU and hippocampal tissue was analyzed by flow cytometry. RNAseq analysis was conducted on microglia FACS sorted from the hippocampus of control or IL-1ß-treated APP/PS1 mice. These microglia were also sorted based on MX04 labeling (MX04+ and MX04- microglia). RESULTS: Resident microglia (CD45loCD11b+) constituted > 70% of the MX04+ cells in both Phe- and IL-1ß-treated conditions, and < 15% of MX04+ cells were recruited myeloid cells (CD45hiCD11b+). However, IL-1ß treatment did not augment the percentage of MX04+ microglia nor the quantity of fAß internalized by individual microglia. Instead, IL-1ß increased the total number of MX04+ microglia in the hippocampus due to IL-1ß-induced proliferation. In addition, transcriptomic analyses revealed that IL-1ß treatment was associated with large-scale changes in the expression of genes related to immune responses, proliferation, and cytokine signaling. CONCLUSIONS: These studies show that IL-1ß overexpression early in amyloid pathogenesis induces a change in the microglial gene expression profile and an expansion of microglial cells that facilitates Aß plaque clearance.


Assuntos
Reprogramação Celular/fisiologia , Interleucina-1beta/biossíntese , Microglia/metabolismo , Placa Amiloide/metabolismo , Transcrição Gênica/fisiologia , Transcriptoma/fisiologia , Animais , Proliferação de Células/fisiologia , Feminino , Interleucina-1beta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/genética
9.
Part Fibre Toxicol ; 16(1): 45, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771615

RESUMO

BACKGROUND: A growing body of epidemiological literature indicates that particulate matter (PM) air pollution exposure is associated with elevated Alzheimer's disease (AD) risk and may exacerbate AD-related cognitive decline. Of concern is exposure to the ultrafine PM (UFP) fraction (≤100 nm), which deposits efficiently throughout the respiratory tract, has higher rates of translocation to secondary organs, like brain, and may induce inflammatory changes. We, therefore, hypothesize that exposure to UFPs will exacerbate cognitive deficits in a mouse model of AD. The present study assessed alterations in learning and memory behaviors in aged (12.5 months) male 3xTgAD and non-transgenic mice following a 2-week exposure (4-h/day, 4 days/week) to concentrated ambient UFPs using the Harvard ultrafine concentrated ambient particle system (HUCAPS) or filtered air. Beginning one month following exposure, locomotor activity, spatial learning and memory, short-term recognition memory, appetitive motivation, and olfactory discrimination were assessed. RESULTS: No effects on locomotor activity were found following HUCAPS exposure (number concentration, 1 × 104-4.7 × 105 particles/cm3; mass concentration, 29-132 µg/m3). HUCAPS-exposed mice, independent of AD background, showed a significantly decreased spatial learning, mediated through reference memory deficits, as well as short-term memory deficits in novel object recognition testing. AD mice displayed diminished spatial working memory, potentially a result of olfactory deficits, and short-term memory. AD background modulated HUCAPS-induced changes on appetitive motivation and olfactory discrimination, specifically enhancing olfactory discrimination in NTg mice. Modeling variation in appetitive motivation as a covariate in spatial learning and memory, however, did not support the conclusion that differences in motivation significantly underlie changes in spatial learning and memory. CONCLUSIONS: A short-term inhalation exposure of aged mice to ambient UFPs at human-relevant concentrations resulted in protracted (testing spanning 1-6.5 months post-exposure) adverse effects on multiple memory domains (reference and short-term memory) independent of AD background. Impairments in learning and memory were present when accounting for potential covariates like motivational changes and locomotor activity. These results highlight the need for further research into the potential mechanisms underlying the cognitive effects of UFP exposure in adulthood.


Assuntos
Poluentes Atmosféricos/toxicidade , Doença de Alzheimer/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Memória/efeitos dos fármacos , Material Particulado/toxicidade , Doença de Alzheimer/psicologia , Animais , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Tamanho da Partícula , Reconhecimento Psicológico/efeitos dos fármacos
10.
Glia ; 66(4): 846-861, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29288597

RESUMO

Ionizing radiation (IR) is commonly used to treat central nervous system (CNS) cancers and metastases. While IR promotes remission, frequent side effects including impaired cognition and white matter loss occur following treatment. Fractionation is used to minimize these CNS late side effects, as it reduces IR effects in differentiated normal tissue, but not rapidly proliferating normal or tumor tissue. However, side effects occur even with the use of fractionated paradigms. Oligodendrocyte progenitor cells (OPCs) are a proliferative population within the CNS affected by radiation. We hypothesized that fractionated radiation would lead to OPC loss, which could contribute to the delayed white matter loss seen after radiation exposure. We found that fractionated IR induced a greater early loss of OPCs than an equivalent single dose exposure. Furthermore, OPC recovery was impaired following fractionated IR. Finally, reduced OPC differentiation and mature oligodendrocyte numbers occurred in single dose and fractionated IR paradigms. This work demonstrates that fractionation does not spare normal brain tissue and, importantly, highlights the sensitivity of OPCs to fractionated IR, suggesting that fractionated schedules may promote white matter dysfunction, a point that should be considered in radiotherapy.


Assuntos
Fracionamento da Dose de Radiação , Células Precursoras de Oligodendrócitos/efeitos da radiação , Tolerância a Radiação , Animais , Antineoplásicos Hormonais/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos da radiação , Bromodesoxiuridina , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Radioisótopos de Césio , Relação Dose-Resposta a Droga , Feminino , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Imuno-Histoquímica , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Transgênicos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Tolerância a Radiação/efeitos dos fármacos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Recuperação de Função Fisiológica , Caracteres Sexuais , Tamoxifeno/farmacologia
12.
J Med Virol ; 90(1): 26-33, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28856681

RESUMO

Both respiratory syncytial virus (RSV) and influenza A virus (IAV) may infect human peripheral blood mononuclear leukocytes (PBMC) during the immune response to viral challenge as the cells are recruited to the respiratory tract. The current studies demonstrated differences in PBMC responses to the two viruses very early after exposure, including reduced fos protein and CD69 expression and IL-2 production by RSV-exposed T lymphocytes. Exposure to RSV resulted in reduced lymphocyte proliferation despite evidence of a virus-specific T lymphocyte frequency equivalent to that for influenza virus. Reduced RSV-induced proliferation was not due to apoptosis, which was itself reduced relative to that of influenza virus-exposed T lymphocytes. The data indicate that differential immune responses to RSV and influenza virus are determined early after exposure of human PBMC and support the concept that the anamnestic immune response that might prevent clinically evident reinfection is attenuated very soon after exposure to RSV. Thus, candidate RSV vaccines should be expected to reduce but not prevent clinical illness upon subsequent infection by RSV. Furthermore, effective therapeutic agents for RSV are likely to be needed, especially for high-risk populations, even after vaccine development.


Assuntos
Proliferação de Células , Vírus da Influenza A/fisiologia , Ativação Linfocitária , Vírus Sincicial Respiratório Humano/fisiologia , Linfócitos T/imunologia , Linfócitos T/virologia , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Apoptose , Humanos , Vírus da Influenza A/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Lectinas Tipo C/genética , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Vírus Sincicial Respiratório Humano/imunologia , Linfócitos T/fisiologia
14.
J Neurochem ; 138(5): 653-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27248001

RESUMO

Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview of physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia and astrocyte cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer's disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview on physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Imunidade Inata/imunologia , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Sistema Nervoso Central/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Doenças Neurodegenerativas/imunologia
15.
J Neuroinflammation ; 13: 30, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26842770

RESUMO

BACKGROUND: Cranial radiotherapy is used to treat tumors of the central nervous system (CNS), as well as non-neoplastic conditions such as arterio-venous malformations; however, its use is limited by the tolerance of adjacent normal CNS tissue, which can lead to devastating long-term sequelae for patients. Despite decades of research, the underlying mechanisms by which radiation induces CNS tissue injury remain unclear. Neuroinflammation and immune cell infiltration are a recognized component of the CNS radiation response; however, the extent and mechanisms by which bone marrow-derived (BMD) immune cells participate in late radiation injury is unknown. Thus, we set out to better characterize the response and tested the hypothesis that C-C chemokine receptor type 2 (CCR2) signaling was required for myeloid cell recruitment following brain irradiation. METHODS: We used young adult C57BL/6 male bone marrow chimeric mice created with donor mice that constitutively express enhanced green fluorescent protein (eGFP). The head was shielded to avoid brain radiation exposure during chimera construction. Radiation dose and time response studies were conducted in wild-type chimeras, and additional experiments were performed with chimeras created using donor marrow from CCR2 deficient, eGFP-expressing mice. Infiltrating eGFP+ cells were identified and quantified using immunofluorescent microscopy. RESULTS: Brain irradiation resulted in a dose- and time-dependent infiltration of BMD immune cells (predominately myeloid) that began at 1 month and persisted until 6 months following ≥15 Gy brain irradiation. Infiltration was limited to areas that were directly exposed to radiation. CCR2 signaling loss resulted in decreased numbers of infiltrating cells at 6 months that appeared to be restricted to cells also expressing major histocompatibility complex class II molecules. CONCLUSIONS: The potential roles played by infiltrating immune cells are of current importance due to increasing interest in immunotherapeutic approaches for cancer treatment and a growing clinical interest in survivorship and quality of life issues. Our findings demonstrate that injury from brain radiation facilitates a dose- and time-dependent recruitment of BMD cells that persists for at least 6 months and, in the case of myeloid cells, is dependent on CCR2 signaling.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Células Mieloides/efeitos da radiação , Lesões por Radiação/complicações , Receptores CCR2/metabolismo , Transdução de Sinais/efeitos da radiação , Animais , Transplante de Medula Óssea , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Infiltração de Neutrófilos/efeitos da radiação , Quimera por Radiação/fisiologia , Receptores CCR2/genética , Fatores de Tempo
16.
J Neuroinflammation ; 12: 203, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538310

RESUMO

BACKGROUND: Neuroinflammation has long been considered a driver of Alzheimer's disease progression. However, experiments developed to explore the interaction between neuroinflammation and Alzheimer's disease (AD) pathology showed a surprising reduction in amyloid beta (Aß) plaque deposition. We sought to understand this unexpected outcome by examining microglia phenotypes during chronic neuroinflammation. METHODS: Using an adeno-associated virus vector carrying hIL-1ß cDNA, inflammation was induced in one hippocampus of 8-month-old amyloid precursor protein (APP)/PS1 mice for 4 weeks, while the other hemisphere received control injections. Bone marrow chimeras and staining analysis were used to identify the origins and types of immune cells present during sustained inflammation. Arginase 1 (Arg1) and inducible nitric oxide synthase (iNOS) immunoreactivity were used as markers of alternatively activated and classically activated cells, respectively, and changes in cellular uptake of Aß by Arg1+ or iNOS+ microglia was demonstrated by confocal microscopy. To determine if an anti-inflammatory phenotype was present during neuroinflammation, RNA was extracted on flow-sorted microglia and rt-PCR was performed. Interleukin-4 injection was used to induce alternatively activated cells, whereas a minipump and intrahippocampal cannula was used to deliver an interleukin (IL)-4Rα antibody to block the induction of Arg1+ cells in the setting of sustained IL-1ß expression. RESULTS: We observed a robust upregulation of centrally derived Arg1+ microglia present only in the inflamed hemisphere. Furthermore, in the inflamed hemisphere, greater numbers of Arg1+ microglia contained Aß when compared to iNOS+ microglia. RNA isolated from flow-sorted microglia from the inflamed hemisphere demonstrated elevation of mRNA species consistent with alternative activation as well as neuroprotective genes such as BDNF and IGF1. To explore if Arg1+ microglia mediated plaque reduction, we induced Arg1+ microglia with IL-4 and observed significant plaque clearance. Moreover, when we reduced Arg1+ microglia induction in the context of neuroinflammation using an anti-IL-4Rα antibody delivered via intrahippocampal cannula, we observed a clear correlation between numbers of Arg1+ microglia and plaque reduction. CONCLUSIONS: Together, these findings suggest that Arg1+ microglia are involved in Aß plaque reduction during sustained, IL-1ß-dependent neuroinflammation, opening up possible new avenues for immunomodulatory therapy of AD.


Assuntos
Arginase/genética , Inflamação/patologia , Interleucina-1beta/metabolismo , Microglia/enzimologia , Placa Amiloide/patologia , Adenoviridae/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , DNA Complementar/genética , Hipocampo/metabolismo , Interleucina-1/genética , Subunidade alfa de Receptor de Interleucina-4/imunologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/biossíntese , Presenilina-1/genética
17.
J Neurosci ; 33(11): 5053-64, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23486975

RESUMO

Neuroinflammation is an important component of Alzheimer's disease (AD) pathogenesis and has been implicated in neurodegeneration. Interleukin-1 (IL-1), a potent inflammatory cytokine in the CNS, is chronically upregulated in human AD and believed to serve as part of a vicious inflammatory cycle that drives AD pathology. To further understand the role of IL-1ß in AD pathogenesis, we used an inducible model of sustained IL-1ß overexpression (IL-1ß(XAT)) developed in our laboratory. The triple transgenic mouse model of AD, which develops plaques and tangles later in its life cycle, was bred with IL-1ß(XAT) mice, and effects of IL-1ß overexpression on AD pathology were assessed in F1 progeny. After 1 and 3 months of transgene expression, we found robust increases in tau phosphorylation despite an ∼70-80% reduction in amyloid load and fourfold to sixfold increase in plaque-associated microglia, as well as evidence of greater microglial activation at the site of inflammation. We also found evidence of increased p38 mitogen-activated protein kinase and glycogen synthase kinase-3ß activity, which are believed to contribute to tau phosphorylation. Thus, neuroinflammation regulates amyloid and tau pathology in opposing ways, suggesting that it provides a link between amyloid accumulation and changes in tau and raising concerns about the use of immunomodulatory therapies in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Interleucina-1beta/metabolismo , Proteínas tau/metabolismo , Fatores Etários , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Vírus da Imunodeficiência Felina/genética , Interleucina-1beta/deficiência , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Proteínas Musculares , Mutação/genética , Presenilina-1/genética , Trissacarídeos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas tau/genética
18.
Neurobiol Dis ; 69: 124-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24874542

RESUMO

Neuroinflammation is a key component of Alzheimer's disease (AD) pathogenesis. Particularly, the proinflammatory cytokine interleukin-1 beta (IL-1ß) is upregulated in human AD and believed to promote amyloid plaque deposition. However, studies from our laboratory have shown that chronic IL-1ß overexpression in the APPswe/PSEN1dE9 (APP/PS1) mouse model of AD ameliorates amyloid pathology, increases plaque-associated microglia, and induces recruitment of peripheral immune cells to the brain parenchyma. To investigate the contribution of CCR2 signaling in IL-1ß-mediated amyloid plaque clearance, seven month-old APP/PS1/CCR2(-/-) mice were intrahippocampally transduced with a recombinant adeno-associated virus serotype 2 containing the cleaved form of human IL-1ß (rAAV2-IL-1ß). Four weeks after rAAV2-IL-1ß transduction, we found significant reductions in 6E10 and Congo red staining of amyloid plaques that was confirmed by decreased levels of insoluble Aß1-42 and Aß1-40 in the inflamed hippocampus. Bone marrow chimeric studies confirmed the presence of infiltrating immune cells following IL-1ß overexpression and revealed that dramatic reduction of CCR2(+) peripheral mononuclear cell recruitment to the inflamed hippocampus did not prevent the ability of IL-1ß to induce amyloid plaque clearance. These results suggest that infiltrating CCR2(+) monocytes do not contribute to IL-1ß-mediated amyloid plaque clearance.


Assuntos
Doença de Alzheimer/imunologia , Hipocampo/imunologia , Interleucina-1beta/metabolismo , Placa Amiloide/imunologia , Receptores CCR2/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/patologia , Humanos , Interleucina-1beta/genética , Leucócitos Mononucleares/imunologia , Camundongos Transgênicos , Neuroimunomodulação/fisiologia , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Receptores CCR2/genética , Transdução de Sinais , Quimeras de Transplante
19.
J Neuroinflammation ; 11: 98, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24889886

RESUMO

The concept of multiple macrophage activation states is not new. However, extending this idea to resident tissue macrophages, like microglia, has gained increased interest in recent years. Unfortunately, the research on peripheral macrophage polarization does not necessarily translate accurately to their central nervous system (CNS) counterparts. Even though pro- and anti-inflammatory cytokines can polarize microglia to distinct activation states, the specific functions of these states is still an area of intense debate. This review examines the multiple possible activation states microglia can be polarized to. This is followed by a detailed description of microglial polarization and the functional relevance of this process in both acute and chronic CNS disease models described in the literature. Particular attention is given to utilizing M2 microglial polarization as a potential therapeutic option in treating diseases.


Assuntos
Encefalite/patologia , Microglia/fisiologia , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Humanos , Ativação de Macrófagos/fisiologia
20.
Mol Carcinog ; 53(11): 893-906, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23776059

RESUMO

Recent literature suggests that sEcad exerts pro-oncogenic effects, possibly acting as a ligand for the human epidermal growth factor family. Here we show that sEcad is a novel candidate protein for drug targeting since it is increased in human and mouse HER2-positive (HER2+) breast tumors, MMTV-PyMT bodily fluids and human cell culture systems. Mechanistically, we show that endogenous sEcad, and to a lesser extent membrane-bound E-cadherin, associates with HER1, HER2, and HER3 in human and MMTV-PyMT mouse HER2+ tumors and with HER1 in triple negative breast cancer (TNBC) specimens. Furthermore, addition of exogenous recombinant human E-cadherin/Fc chimeric protein (rhEcad/Fc; sEcad) to HER2+ MCF-7, SKBR3, and HER2-negative MDA-MB-231 TNBC cells, resulted in sEcad-HER receptor family interactions, activation of HER1-4 and downstream pro-survival signaling, including the MAPK-PI3K/Akt/mTOR pathways and IAP family members. Lastly, we demonstrate that sEcad exerts pro-oncogenic effects via HER signaling, and acts additively with the HER ligand EGF to promote HER2+ breast cancer proliferation and migration, as well as TNBC invasion. Because sEcad associates and activates many of the oncogenic pathways that tumors utilize for growth and survival and serum levels in patients correlates with clinical response, suggests that targeted therapy against sEcad in combination with other therapies may potentially offer a novel therapeutic strategy for the treatment of breast cancers.


Assuntos
Caderinas/metabolismo , Receptores ErbB/biossíntese , Terapia de Alvo Molecular , Receptor ErbB-2/biossíntese , Receptor ErbB-3/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Idoso , Animais , Caderinas/antagonistas & inibidores , Caderinas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosfatidilinositol 3-Quinase/biossíntese , Proteínas Proto-Oncogênicas c-akt/biossíntese , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/biossíntese , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA