Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(10): 2238-2255.e20, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37146613

RESUMO

ß-arrestin plays a key role in G protein-coupled receptor (GPCR) signaling and desensitization. Despite recent structural advances, the mechanisms that govern receptor-ß-arrestin interactions at the plasma membrane of living cells remain elusive. Here, we combine single-molecule microscopy with molecular dynamics simulations to dissect the complex sequence of events involved in ß-arrestin interactions with both receptors and the lipid bilayer. Unexpectedly, our results reveal that ß-arrestin spontaneously inserts into the lipid bilayer and transiently interacts with receptors via lateral diffusion on the plasma membrane. Moreover, they indicate that, following receptor interaction, the plasma membrane stabilizes ß-arrestin in a longer-lived, membrane-bound state, allowing it to diffuse to clathrin-coated pits separately from the activating receptor. These results expand our current understanding of ß-arrestin function at the plasma membrane, revealing a critical role for ß-arrestin preassociation with the lipid bilayer in facilitating its interactions with receptors and subsequent activation.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , beta-Arrestinas , beta-Arrestinas/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Bicamadas Lipídicas , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Dinâmica Molecular
2.
Cell ; 184(13): 3502-3518.e33, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34048700

RESUMO

Thermogenic adipocytes possess a therapeutically appealing, energy-expending capacity, which is canonically cold-induced by ligand-dependent activation of ß-adrenergic G protein-coupled receptors (GPCRs). Here, we uncover an alternate paradigm of GPCR-mediated adipose thermogenesis through the constitutively active receptor, GPR3. We show that the N terminus of GPR3 confers intrinsic signaling activity, resulting in continuous Gs-coupling and cAMP production without an exogenous ligand. Thus, transcriptional induction of Gpr3 represents the regulatory parallel to ligand-binding of conventional GPCRs. Consequently, increasing Gpr3 expression in thermogenic adipocytes is alone sufficient to drive energy expenditure and counteract metabolic disease in mice. Gpr3 transcription is cold-stimulated by a lipolytic signal, and dietary fat potentiates GPR3-dependent thermogenesis to amplify the response to caloric excess. Moreover, we find GPR3 to be an essential, adrenergic-independent regulator of human brown adipocytes. Taken together, our findings reveal a noncanonical mechanism of GPCR control and thermogenic activation through the lipolysis-induced expression of constitutively active GPR3.


Assuntos
Tecido Adiposo Marrom/metabolismo , Receptor Constitutivo de Androstano/metabolismo , Lipólise , Receptores Acoplados a Proteínas G/metabolismo , Termogênese , Adipócitos/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Temperatura Baixa , Gorduras na Dieta/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Sistema Nervoso Simpático/metabolismo , Transcrição Gênica
3.
Physiol Rev ; 101(3): 857-906, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33331229

RESUMO

G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.


Assuntos
Membrana Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais
4.
Emerg Infect Dis ; 30(13): S13-S16, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38561629

RESUMO

The global COVID-19 pandemic illustrates the importance of a close partnership between public health and juvenile justice systems when responding to communicable diseases. Many setting-specific obstacles must be navigated to respond effectively to limit disease transmission and negative health outcomes while maintaining necessary services for youth in confinement facilities. The response requires multidisciplinary expertise and collaboration to address unique considerations. Public health mitigation strategies must balance the risk for disease against the negative effects of restrictions. Key aspects of the COVID-19 response in the juvenile justice system of Colorado, USA, involved establishing robust communication and data reporting infrastructures, building a multidisciplinary response team, adapting existing infection prevention guidelines, and focusing on a whole-person health approach to infection prevention. We examine lessons learned and offer recommendations on pandemic emergency response planning and managing a statewide public health emergency in youth confinement settings that ensure ongoing readiness.


Assuntos
COVID-19 , Adolescente , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Colorado/epidemiologia , Saúde Pública , Análise de Sistemas
5.
Emerg Infect Dis ; 30(6): 1182-1192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781929

RESUMO

In adults, viral load and disease severity can differ by SARS-CoV-2 variant, patterns less understood in children. We evaluated symptomatology, cycle threshold (Ct) values, and SARS-CoV-2 variants among 2,299 pediatric SARS-CoV-2 patients (0-21 years of age) in Colorado, USA, to determine whether children infected with Delta or Omicron had different symptom severity or Ct values than during earlier variants. Children infected during the Delta and Omicron periods had lower Ct values than those infected during pre-Delta, and children <1 year of age had lower Ct values than older children. Hospitalized symptomatic children had lower Ct values than asymptomatic patients. Compared with pre-Delta, more children infected during Delta and Omicron were symptomatic (75.4% pre-Delta, 95.3% Delta, 99.5% Omicron), admitted to intensive care (18.8% pre-Delta, 39.5% Delta, 22.9% Omicron), or received oxygen support (42.0% pre-Delta, 66.3% Delta, 62.3% Omicron). Our data reinforce the need to include children, especially younger children, in pathogen surveillance efforts.


Assuntos
COVID-19 , SARS-CoV-2 , Índice de Gravidade de Doença , Carga Viral , Humanos , COVID-19/epidemiologia , COVID-19/virologia , Criança , Colorado/epidemiologia , Pré-Escolar , Lactente , Adolescente , Masculino , Feminino , Recém-Nascido , Adulto Jovem , Hospitalização
6.
J Neurochem ; 165(2): 131-148, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36227087

RESUMO

Heat shock factor 1 (HSF1) is a master stress-responsive transcriptional factor, protecting cells from death. However, its gene regulation in vivo in the brain in response to neuronal stimuli remains elusive. Here, we investigated its direct regulation of the brain-derived neurotrophic factor (BDNF) gene (Bdnf) in response to acute neuronal stress stimuli in the brain. The results of immunohistochemistry and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that administration of kainic acid (a glutamate receptor agonist inducing excitotoxity) to young adult mice induced HSF1 nuclear translocation and its binding to multiple Bdnf promoters in the hippocampus. Footshock, a physical stressor used for learning, also induced HSF1 binding to selected Bdnf promoters I and IV. This is, to our knowledge, the first demonstration of HSF1 gene regulation in response to neuronal stimuli in the hippocampus in vivo. HSF1 binding sites (HSEs) in Bdnf promoters I and IV were also detected when immunoprecipitated by an antibody of phosphorylated (p)CREB (cAMP-responsive element-binding protein), suggesting their possible interplay in acute stress-induced Bdnf transcription. Interestingly, their promoter binding patterns differed by KA and footshock, suggesting that HSF1 and pCREB orchestrate to render fine-tuned promoter control depending on the types of stress. Further, HSF1 overexpression increased Bdnf promoter activity in a luciferase assay, while virus infection of constitutively active-form HSF1 increased levels of BDNF mRNA and protein in vitro in primary cultured neurons. These results indicated that HSF1 activation of Bdnf promoter was sufficient to induce BDNF expression. Taken together, these results suggest that HSF1 promoter-specific control of Bdnf gene regulation plays an important role in neuronal protection and plasticity in the hippocampus in response to acute stress, possibly interplaying with pCREB.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Camundongos , Animais , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/metabolismo , Resposta ao Choque Térmico
7.
Emerg Infect Dis ; 29(5): 929-936, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972709

RESUMO

To compare SARS-CoV-2 antibody seroprevalence among children with seropositive confirmed COVID-19 case counts (case ascertainment by molecular amplification) in Colorado, USA, we conducted a cross-sectional serosurvey during May-July 2021. For a convenience sample of 829 Colorado children, SARS-CoV-2 seroprevalence was 36.7%, compared with prevalence of 6.5% according to individually matched COVID-19 test results reported to public health. Compared with non-Hispanic White children, seroprevalence was higher among Hispanic, non-Hispanic Black, and non-Hispanic other race children, and case ascertainment was significantly lower among Hispanic and non-Hispanic Black children. This serosurvey accurately estimated SARS-CoV-2 prevalence among children compared with confirmed COVID-19 case counts and revealed substantial racial/ethnic disparities in infections and case ascertainment. Continued efforts to address racial and ethnic differences in disease burden and to overcome potential barriers to case ascertainment, including access to testing, may help mitigate these ongoing disparities.


Assuntos
COVID-19 , Humanos , Criança , COVID-19/epidemiologia , SARS-CoV-2 , Colorado/epidemiologia , Estudos Soroepidemiológicos , Estudos Transversais
8.
Hum Mol Genet ; 29(10): 1607-1623, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32227114

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease characterized by progressive muscle degeneration. The condition is driven by nonsense and missense mutations in the dystrophin gene, leading to instability of the sarcolemma and skeletal muscle necrosis and atrophy. Resulting changes in muscle-specific gene expression that take place in dystrophin's absence remain largely uncharacterized, as they are potentially obscured by the chronic inflammation elicited by muscle damage in humans. Caenorhabditis elegans possess a mild inflammatory response that is not active in the muscle, and lack a satellite cell equivalent. This allows for the characterization of the transcriptome rearrangements affecting disease progression independently of inflammation and regeneration. In effort to better understand these dynamics, we have isolated and sequenced body muscle-specific transcriptomes from C. elegans lacking functional dystrophin at distinct stages of disease progression. We have identified an upregulation of genes involved in mitochondrial function early in disease progression, and an upregulation of genes related to muscle repair in later stages. Our results suggest that in C. elegans, dystrophin may have a signaling role early in development, and its absence may activate compensatory mechanisms that counteract muscle degradation caused by loss of dystrophin. We have also developed a temperature-based screening method for synthetic paralysis that can be used to rapidly identify genetic partners of dystrophin. Our results allow for the comprehensive identification of transcriptome changes that potentially serve as independent drivers of disease progression and may in turn allow for the identification of new therapeutic targets for the treatment of DMD.


Assuntos
Distrofina/genética , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Transcriptoma/genética , Animais , Caenorhabditis elegans/genética , Códon sem Sentido/genética , Modelos Animais de Doenças , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/patologia , Sarcolema/genética , Sarcolema/patologia
9.
Genome Res ; 29(12): 2104-2116, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31744903

RESUMO

3' Untranslated regions (3' UTRs) of mRNAs emerged as central regulators of cellular function because they contain important but poorly characterized cis-regulatory elements targeted by a multitude of regulatory factors. The model nematode Caenorhabditis elegans is ideal to study these interactions because it possesses a well-defined 3' UTRome. To improve its annotation, we have used a genome-wide bioinformatics approach to download raw transcriptome data for 1088 transcriptome data sets corresponding to the entire collection of C. elegans trancriptomes from 2015 to 2018 from the Sequence Read Archive at the NCBI. We then extracted and mapped high-quality 3'-UTR data at ultradeep coverage. Here, we describe and release to the community the updated version of the worm 3' UTRome, which we named 3' UTRome v2. This resource contains high-quality 3'-UTR data mapped at single-base ultraresolution for 23,084 3'-UTR isoform variants corresponding to 14,788 protein-coding genes and is updated to the latest release of WormBase. We used this data set to study and probe principles of mRNA cleavage and polyadenylation in C. elegans The worm 3' UTRome v2 represents the most comprehensive and high-resolution 3'-UTR data set available in C. elegans and provides a novel resource to investigate the mRNA cleavage and polyadenylation reaction, 3'-UTR biology, and miRNA targeting in a living organism.


Assuntos
Regiões 3' não Traduzidas , Caenorhabditis elegans , MicroRNAs , Poliadenilação , RNA de Helmintos , Sequências Reguladoras de Ácido Nucleico , Transcriptoma , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA de Helmintos/biossíntese , RNA de Helmintos/genética
10.
Horm Behav ; 141: 105152, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35286897

RESUMO

Social relationships may influence circulating glucocorticoid levels, particularly in group-living species in which individuals regularly engage in interactions with conspecifics. The effects of such interactions appear to vary, with greater social contact being associated with increased glucocorticoid concentrations in some species but decreased concentrations in others. These distinct responses raise intriguing questions regarding relationships among social behavior, individual phenotypes, and glucocorticoid physiology. To explore such relationships in a free-living mammal with a dynamic social organization, we quantified variation in baseline glucocorticoids in a population of highland tuco-tucos (Ctenomys opimus) from Jujuy Province, Argentina. These subterranean rodents are facultatively social, with lone and group-living individuals regularly occurring within the same population. To assess potential endocrine correlates of this behavioral variability, we examined differences in baseline fecal glucocorticoid metabolite (fGCm) concentrations as a function of social group size and composition as well as several metrics of social behavior derived from social network analyses. Despite marked variability in social relationships among the 37 (12 male, 25 female) free-living tuco-tucos sampled, none of the measures of social behavior examined were significant predictors of variation in fGCm concentrations. In contrast, individual variation in glucocorticoid metabolites was best explained by sex, with males having higher fGCm concentrations than females. These analyses provide the first characterization of the glucocorticoid physiology of highland tuco-tucos and underscore the potential importance of intrinsic phenotypic factors (e.g., sex) in shaping glucocorticoid variation in free-living mammals.


Assuntos
Glucocorticoides , Roedores , Animais , Argentina , Fezes , Feminino , Glucocorticoides/metabolismo , Masculino , Roedores/fisiologia , Comportamento Social
11.
MMWR Morb Mortal Wkly Rep ; 71(38): 1212-1215, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36136957

RESUMO

Monkeypox virus (MPXV) is an orthopoxvirus in the Poxviridae family. The current multinational monkeypox outbreak has now spread to 96 countries that have not historically reported monkeypox, with most cases occurring among gay, bisexual, and other men who have sex with men (1,2). The first monkeypox case in the United States associated with this outbreak was identified in May 2022 in Massachusetts (1); monkeypox has now been reported in all 50 states, the District of Columbia (DC), and one U.S. territory. MPXV is transmitted by close contact with infected persons or animals; infection results in a febrile illness followed by a diffuse vesiculopustular rash and lymphadenopathy. However, illness in the MPXV current Clade II outbreak has differed: the febrile prodrome is frequently absent or mild, and the rash often involves genital, anal, or oral regions (3,4). Although neuroinvasive disease has been previously reported with MPXV infection (5,6), it appears to be rare. This report describes two cases of encephalomyelitis in patients with monkeypox disease that occurred during the current U.S. outbreak. Although neurologic complications of acute MPXV infections are rare, suspected cases should be reported to state, tribal, local, or territorial health departments to improve understanding of the range of clinical manifestations of and treatment options for MPXV infections during the current outbreak.


Assuntos
Encefalomielite , Exantema , Mpox , Minorias Sexuais e de Gênero , Colorado/epidemiologia , District of Columbia , Homossexualidade Masculina , Humanos , Masculino , Mpox/epidemiologia , Monkeypox virus , Estados Unidos
12.
Int J Eat Disord ; 55(8): 1042-1053, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35689569

RESUMO

OBJECTIVE: As patients with anorexia nervosa tend to "like" palatable tastants less than controls, we set out to model this preclinically by using the taste reactivity test (TRT) to assess hedonic state in rats following weight restoration from a bout of activity-based anorexia (ABA). METHOD: Female rats (n = 31) were surgically implanted with an intraoral catheter, which allowed experimenters to assess baseline TRT to six tastants. Following baseline TRT, animals were either exposed to the activity-based anorexia condition (ABA; 1.5HR chow/ad lib wheel until 25% weight loss), kept sedentary (SED; ad lib chow/locked wheel), given access to running wheels with ad lib chow access (RW; ad lib chow/wheel), or were body weight matched to the ABA group (BWM; restricted chow/locked wheel). Following 25% weight loss, wheels were locked and food returned to ABA rats. Paired RW groups had their wheels locked and paired BWM rats were given ad lib access to food. Animals were given 10 days to recover prior to a second TRT. Videos were analyzed for liking (tongue protrusions) and disliking (gape) behaviors. RESULTS: The ABA group displayed a significant within-subject reduction in cumulative lick responses to water and 1 M sucrose. Additionally, we found the SED and ABA group displayed a significant within-subject reduction in cumulative lick responses to .1 M sucrose. Positive hedonic responses did not decline in either the BWM or the RW groups. DISCUSSION: The data show a novel phenomenon that a history of ABA results in an anhedonia phenotype that mirrors aspects of AN. SIGNIFICANCE STATEMENT: Patients recovered from anorexia nervosa report anhedonia, or the lack of pleasure in consuming palatable foods. Unfortunately, the biological mechanism underpinning anhedonia in anorexia nervosa is not well understood. The current study assessed hedonic state in adolescent female rats prior to and 10 days recovered following the activity-based anorexia paradigm. Age-matched, running wheel-matched and body weight-matched control groups were also tested at the same time points.


Assuntos
Anorexia Nervosa , Anorexia , Anedonia , Animais , Anorexia/etiologia , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Feminino , Humanos , Atividade Motora/fisiologia , Ratos , Sacarose , Redução de Peso
13.
J Cell Physiol ; 236(12): 8160-8170, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34170016

RESUMO

Epidermal growth factor (EGF) receptors (ErbB1-ErbB4) promote cardiac development and growth, although the specific EGF ligands and receptor isoforms involved in growth/repair versus pathology remain undefined. We challenged ventricular cardiomyocytes with EGF-like ligands and observed that selective activation of ErbB4 (the receptor for neuregulin 1 [NRG1]), but not ErbB1 (the receptor for EGF, EGFR), stimulated hypertrophy. This lack of direct ErbB1-mediated hypertrophy occurred despite robust activation of extracellular-regulated kinase 1/2 (ERK) and protein kinase B. Hypertrophic responses to NRG1 were unaffected by the tyrosine kinase inhibitor (AG1478) at concentrations that are selective for ErbB1 over ErbB4. NRG1-induced cardiomyocyte enlargement was suppressed by small interfering RNA (siRNA) knockdown of ErbB4 and ErbB2, whereas ERK phosphorylation was only suppressed by ErbB4 siRNA. Four ErbB4 isoforms exist (JM-a/JM-b and CYT-1/CYT-2), generated by alternative splicing, and their expression declines postnatally and following cardiac hypertrophy. Silencing of all four isoforms in cardiomyocytes, using an ErbB4 siRNA, abrogated NRG1-induced hypertrophic promoter/reporter activity, which was rescued by coexpression of knockdown-resistant versions of the ErbB4 isoforms. Thus, ErbB4 confers cardiomyocyte hypertrophy to NRG1, and all four ErbB4 isoforms possess the capacity to mediate this effect.


Assuntos
Hipertrofia/metabolismo , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/metabolismo , Receptor ErbB-4/metabolismo , Processamento Alternativo/genética , Animais , Proliferação de Células/fisiologia , Humanos , Fosforilação/fisiologia , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Receptor ErbB-4/genética , Transdução de Sinais/fisiologia
14.
Int J Eat Disord ; 54(4): 639-645, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368559

RESUMO

OBJECTIVE: Patients with Anorexia Nervosa (AN) display increased levels of oxidative stress that correlates with disease severity. Unfortunately, the biological ramifications of AN-induced oxidative stress on the brain are largely unknown. Our lab uses the preclinical activity-based anorexia (ABA) paradigm to model symptoms of AN. The goal of the present study was to determine how ABA experience affects oxidative state and its consequences in adolescent female rats. METHOD: We compared systemic glutathione and cysteine plasma concentrations and medial prefrontal cortex (mPFC) mitochondrial fission in ABA animals at maximum weight loss or following 10-days of weight recovery to levels in age-matched sedentary (SED) control rats. RESULTS: ABA animals at maximum weight loss had significantly lower plasma levels of cysteine and glutathione compared to SED controls. Additionally, ABA animals at max weight loss have significantly more mPFC mitochondrial fission. There were no significant differences in plasma analyte levels or mitochondrial fission between weight recovered ABA animals and SED controls. DISCUSSION: These data suggest that ABA experience results in oxidative stress that is remedied after weight restoration. The long-lasting ramifications of transient periods of increased oxidative stress are unknown and can lead to significant consequences on brain function and behavior.


Assuntos
Anorexia Nervosa , Anorexia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Dinâmica Mitocondrial , Estresse Oxidativo , Ratos , Redução de Peso
15.
Annu Rev Pharmacol Toxicol ; 56: 627-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26566153

RESUMO

Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.


Assuntos
Sistema Cardiovascular/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Animais , Humanos
16.
Pharmacol Res ; 125(Pt A): 4-13, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28527699

RESUMO

The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the ß-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.


Assuntos
Sistema Cardiovascular/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas de Ligação ao GTP/metabolismo , Humanos , Sistema Renina-Angiotensina/fisiologia , beta-Arrestinas/metabolismo
17.
Integr Comp Biol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782725

RESUMO

Animals have evolved behavioral and morphological traits that allow them to respond to environmental challenges. However, these traits may have long-term consequences that could impact an animal's performance, fitness, and welfare. Several species in a group of the arachnid order of Opiliones release their legs voluntarily to escape predators. These animals use their legs for locomotion, sensation, and reproduction. Here, we first compile data across species in the suborder Eupnoi, showing that more than half of individuals are found missing legs. Then, we review recent work on the ultimate and proximate implications of leg loss in Opiliones. Field and laboratory experiments showed that leg loss (a) did not affect their survival or mating success and (b) compromised the kinematics and energetics of locomotion, but individuals recovered velocity and acceleration quickly. These findings demonstrate that these animals display robustness, i.e., the ability to withstand and overcome the potential consequences of bodily damage. This may explain why leg loss is so common and prevalent in Opiliones. Additionally, we encourage researchers to consider expanding their hypotheses beyond traditional adaptationist and ableist lenses and incorporate a comprehensive examination of animal welfare when studying animals' responses to bodily damage. Finally, we highlight avenues for future research in Opiliones, namely assessing how individuals move in three-dimensional environments, the neural plasticity aiding recovery post-leg loss, applications for bio-inspired design, and evidence-based animal welfare measures.

18.
PLoS One ; 19(6): e0304763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848416

RESUMO

Identifying the factors that favor group living is central to studies of animal social behavior. One demographic parameter that is expected to substantially shape spatial and social relationships is population density. Specifically, high population densities may favor group living by constraining opportunities to live alone. In contrast, low densities may allow individuals to spread out within the habitat, leading to a reduction in the prevalence or size of social groups. Abrupt changes in density following natural catastrophic events provide important opportunities to evaluate the effects of population density on patterns of spatial and social organization. As part of long-term studies of the behavioral ecology of a population of highland tuco-tucos (Ctenomys opimus) at Monumento Natural Laguna de los Pozuelos, Jujuy Province, Argentina, we monitored the demographic and behavioral consequences of a flood that inundated our study site during December 2012. Unlike most species of Ctenomys studied to date, highland tuco-tucos are group living, meaning that multiple adults share burrow systems and nest sites. Despite a post-flood reduction in population density of ~75%, animals present on the study site during the 2013 breeding season continued to live in multi-adult social units (groups). No differences between pre- and post-flood home range sizes were detected and although between-unit spatial overlap was reduced in 2013, overlap within social units did not differ from that in pre-flood years. Animals assigned to the same social unit in 2013 had not lived together during 2012, indicating that post-flood groups were not simply the remnants of those present prior to the flood. Collectively, these findings indicate that group living in highland tuco-tucos is not driven by the density of conspecifics in the habitat. In addition to enhancing understanding of the adaptive bases for group living in Ctenomys, our analyses underscore the power of catastrophic events to generate insights into fundamental aspects of social behavior.


Assuntos
Densidade Demográfica , Comportamento Social , Animais , Argentina , Ecossistema , Comportamento Animal/fisiologia , Inundações , Roedores/fisiologia , Feminino , Masculino
19.
Pain ; 165(1): 177-191, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624900

RESUMO

ABSTRACT: Graded exposure treatment (GET) is a theory-driven pain treatment that aims to improve functioning by exposing patients to activities previously feared and avoided. Combining key elements of GET with acceptance-based exposure, GET Living (GL) was developed for adolescents with chronic pain (GL). Based on robust treatment effects observed in our single-case experimental design pilot trial of GL (NCT01974791), we conducted a 2-arm randomized clinical trial comparing GL with multidisciplinary pain management (MPM) comprised of cognitive behavioral therapy and physical therapy for pain management (NCT03699007). A cohort of 68 youth with chronic musculoskeletal pain (M age 14.2 years; 81% female) were randomized to GL or MPM. Owing to COVID-19 restrictions, 54% of participants received zoom video delivered care. Assessments were collected at baseline, discharge, as well as at 3-month and 6-month follow-up. Primary outcomes were self-reported pain-related fear and avoidance. Secondary outcomes were child functional disability and parent protective responses to child pain. As hypothesized, GL improved in primary and secondary outcomes at 3-month follow-up. Contrary to our superiority hypothesis, there was no significant difference between GL and MPM. Patients reported both GL and MPM (in person and video) as credible and were highly satisfied with the treatment experience. Next steps will involve examining the single-case experimental design data embedded in this trial to facilitate an understanding of individual differences in treatment responses (eg, when effects occurred, what processes changed during treatment within the treatment arm). The current findings support GET Living and MPM for youth with chronic pain.


Assuntos
Dor Crônica , Terapia Cognitivo-Comportamental , Criança , Humanos , Adolescente , Feminino , Masculino , Dor Crônica/terapia , Dor Crônica/psicologia , Resultado do Tratamento , Manejo da Dor/psicologia , Modalidades de Fisioterapia
20.
Biochem Pharmacol ; 219: 115932, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37989413

RESUMO

Bitter taste receptors (T2R) are a subfamily of G protein-coupled receptors that enable humans to detect aversive and toxic substances. The ability to discern bitter compounds varies between individuals and is attributed mainly to naturally occurring T2R polymorphisms. T2Rs are also expressed in numerous non-gustatory tissues, including the heart, indicating potential contributions to cardiovascular physiology. In this study. T2Rs that have previously been identified in human cardiac tissues (T2Rs - 10, 14, 30, 31, 46 and 50) and their naturally occurring polymorphisms were functionally characterised. The ligand-dependent signaling responses of some T2R variants were completely abolished (T2R30 Leu252 and T2R46 Met228), whereas other receptor variants had moderate changes in their maximal response, but not potency, relative to wild type. Using a cAMP fluorescent biosensor, we reveal the productive coupling of T2R14, but not the T2R14 Phe201 variant, to endogenous Gαi. Modeling revealed that these variants resulted in altered interactions that generally affected ligand binding (T2R30 Leu252) or Gα protein interactions (T2R46 Met228 and T2R14 Phe201), rather than receptor structural stability. Interestingly, this study is the first to show a difference in signaling for T2R50 Tyr203 (rs1376251) which has been associated with cardiovascular disease. The observation of naturally occurring functional variation in the T2Rs with the greatest expression in the heart is important, as their discovery should prove useful in deciphering the role of T2Rs within the cardiovascular system.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Paladar/fisiologia , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA