RESUMO
BACKGROUND: Pre-clinical models demonstrate that platelet activation is involved in the spread of malignancy. Ongoing clinical trials are assessing whether aspirin, which inhibits platelet activation, can prevent or delay metastases. METHODS: Urinary 11-dehydro-thromboxane B2 (U-TXM), a biomarker of in vivo platelet activation, was measured after radical cancer therapy and correlated with patient demographics, tumour type, recent treatment, and aspirin use (100 mg, 300 mg or placebo daily) using multivariable linear regression models with log-transformed values. RESULTS: In total, 716 patients (breast 260, colorectal 192, gastro-oesophageal 53, prostate 211) median age 61 years, 50% male were studied. Baseline median U-TXM were breast 782; colorectal 1060; gastro-oesophageal 1675 and prostate 826 pg/mg creatinine; higher than healthy individuals (~500 pg/mg creatinine). Higher levels were associated with raised body mass index, inflammatory markers, and in the colorectal and gastro-oesophageal participants compared to breast participants (P < 0.001) independent of other baseline characteristics. Aspirin 100 mg daily decreased U-TXM similarly across all tumour types (median reductions: 77-82%). Aspirin 300 mg daily provided no additional suppression of U-TXM compared with 100 mg. CONCLUSIONS: Persistently increased thromboxane biosynthesis was detected after radical cancer therapy, particularly in colorectal and gastro-oesophageal patients. Thromboxane biosynthesis should be explored further as a biomarker of active malignancy and may identify patients likely to benefit from aspirin.
Assuntos
Aspirina , Neoplasias Colorretais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores , Neoplasias Colorretais/tratamento farmacológico , Creatinina , Tromboxanos/uso terapêuticoAssuntos
COVID-19 , Humanos , Hospedeiro Imunocomprometido , Anticorpos Antivirais , Teste para COVID-19RESUMO
BACKGROUND: Therapeutic antibodies targeting EGFR have activity in advanced colorectal cancer, but results from clinical trials are inconsistent and the population in which most benefit is derived is uncertain. Our aim was to assess the addition of panitumumab to irinotecan in pretreated advanced colorectal cancer. METHODS: In this open-label, randomised trial, we enrolled patients who had advanced colorectal cancer progressing after fluoropyrimidine treatment with or without oxaliplatin from 60 centres in the UK. From December, 2006 until June, 2008, molecularly unselected patients were recruited to a three-arm design including irinotecan (control), irinotecan plus ciclosporin, and irinotecan plus panitumumab (IrPan) groups. From June 10, 2008, in response to new data, the trial was amended to a prospectively stratified design, restricting panitumumab randomisation to patients with KRAS wild-type tumours; the results of the comparison between the irinotcan and IrPan groups are reported here. We used a computer-generated randomisation sequence (stratified by previous EGFR targeted therapy and then minimised by centre, WHO performance status, previous oxaliplatin, previous bevacizumab, previous dose modifications, and best previous response) to randomly allocate patients to either irinotecan or IrPan. Patients in both groups received 350 mg/m(2) intravenous irinotecan every 3 weeks (300 mg/m(2) if aged ≥70 years or a performance status of 2); patients in the IrPan group also received intravenous panitumumab 9 mg/kg every 3 weeks. The primary endpoint was overall survival in KRAS wild-type patients who had not received previous EGFR targeted therapy, analysed by intention to treat. Tumour DNA was pyrosequenced for KRASc.146, BRAF, NRAS, and PIK3CA mutations, and predefined molecular subgroups were analysed for interaction with the effect of panitumumab. This study is registered, number ISRCTN93248876. RESULTS: Between Dec 4, 2006, and Aug 31, 2010, 1198 patients were enrolled, of whom 460 were included in the primary population of patients with KRASc.12-13,61 wild-type tumours and no previous EGFR targeted therapy. 230 patients were randomly allocated to irinotecan and 230 to IrPan. There was no difference in overall survival between groups (HR 1·01, 95% CI 0·83-1·23; p=0·91), but individuals in the IrPan group had longer progression-free survival (0·78, 0·64-0·95; p=0·015) and a greater number of responses (79 [34%] patients vs 27 [12%]; p<0·0001) than did individuals in the irinotecan group. Grade 3 or worse diarrhoea (64 [29%] of 219 patients vs 39 [18%] of 218 patients), skin toxicity (41 [19%] vs none), lethargy (45 [21]% vs 24 [11%]), infection (42 [19%] vs 22 [10%]) and haematological toxicity (48 [22%] vs 27 [12%]) were reported more commonly in the IrPan group than in the irinotecan group. We recorded five treatment-related deaths, two in the IrPan group and three in the irinotecan group. INTERPRETATION: Adding panitumumab to irinotecan did not improve the overall survival of patients with wild-type KRAS tumours. Further refinement of molecular selection is needed for substantial benefits to be derived from EGFR targeting agents. FUNDING: Cancer Research UK, Amgen Inc.
Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Idoso , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Camptotecina/uso terapêutico , Distribuição de Qui-Quadrado , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Análise Mutacional de DNA , Intervalo Livre de Doença , Esquema de Medicação , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Humanos , Irinotecano , Masculino , Pessoa de Meia-Idade , Mutação , Panitumumabe , Modelos de Riscos Proporcionais , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras) , Fatores de Tempo , Resultado do Tratamento , Reino UnidoRESUMO
PURPOSE: High tumor production of the EGFR ligands, amphiregulin (AREG) and epiregulin (EREG), predicted benefit from anti-EGFR therapy for metastatic colorectal cancer (mCRC) in a retrospective analysis of clinical trial data. Here, AREG/EREG IHC was analyzed in a cohort of patients who received anti-EGFR therapy as part of routine care, including key clinical contexts not investigated in the previous analysis. EXPERIMENTAL DESIGN: Patients who received panitumumab or cetuximab ± chemotherapy for treatment of RAS wild-type mCRC at eight UK cancer centers were eligible. Archival formalin-fixed paraffin-embedded tumor tissue was analyzed for AREG and EREG IHC in six regional laboratories using previously developed artificial intelligence technologies. Primary endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS: A total of 494 of 541 patients (91.3%) had adequate tissue for analysis. A total of 45 were excluded after central extended RAS testing, leaving 449 patients in the primary analysis population. After adjustment for additional prognostic factors, high AREG/EREG expression (n = 360; 80.2%) was associated with significantly prolonged PFS [median: 8.5 vs. 4.4 months; HR, 0.73; 95% confidence interval (CI), 0.56-0.95; P = 0.02] and OS [median: 16.4 vs. 8.9 months; HR, 0.66 95% CI, 0.50-0.86; P = 0.002]. The significant OS benefit was maintained among patients with right primary tumor location (PTL), those receiving cetuximab or panitumumab, those with an oxaliplatin- or irinotecan-based chemotherapy backbone, and those with tumor tissue obtained by biopsy or surgical resection. CONCLUSIONS: High tumor AREG/EREG expression was associated with superior survival outcomes from anti-EGFR therapy in mCRC, including in right PTL disease. AREG/EREG IHC assessment could aid therapeutic decisions in routine practice. See related commentary by Randon and Pietrantonio, p. 4021.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Anfirregulina/metabolismo , Epirregulina/metabolismo , Epirregulina/uso terapêutico , Cetuximab/uso terapêutico , Panitumumabe , Estudos Retrospectivos , Neoplasias Colorretais/patologia , Inteligência Artificial , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias Retais/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Receptores ErbB/metabolismoRESUMO
Patients with hematological malignancies are at increased risk of severe COVID-19 outcomes due to compromised immune responses, but the insights of these studies have been compromised due to intrinsic limitations in study design. Here we present the PROSECO prospective observational study ( NCT04858568 ) on 457 patients with lymphoma that received two or three COVID-19 vaccine doses. We show undetectable humoral responses following two vaccine doses in 52% of patients undergoing active anticancer treatment. Moreover, 60% of patients on anti-CD20 therapy had undetectable antibodies following full vaccination within 12 months of receiving their anticancer therapy. However, 70% of individuals with indolent B-cell lymphoma displayed improved antibody responses following booster vaccination. Notably, 63% of all patients displayed antigen-specific T-cell responses, which increased after a third dose irrespective of their cancer treatment status. Our results emphasize the urgency of careful monitoring of COVID-19-specific immune responses to guide vaccination schemes in these vulnerable populations.
Assuntos
COVID-19 , Neoplasias , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Humanos , SARS-CoV-2 , Reino Unido/epidemiologiaAssuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Linfoma , SARS-CoV-2/imunologia , Idoso , Anticorpos Antivirais/imunologia , Formação de Anticorpos , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Linfoma/complicações , Linfoma/imunologia , Masculino , Pessoa de Meia-Idade , VacinaçãoRESUMO
PURPOSE: We have clinically evaluated a DNA fusion vaccine to target the HLA-A*0201-binding peptide CAP-1 from carcinoembryonic antigen (CEA605-613) linked to an immunostimulatory domain (DOM) from fragment C of tetanus toxin. EXPERIMENTAL DESIGN: Twenty-seven patients with CEA-expressing carcinomas were recruited: 15 patients with measurable disease (arm-I) and 12 patients without radiological evidence of disease (arm-II). Six intramuscular vaccinations of naked DNA (1 mg/dose) were administered up to week 12. Clinical and immunologic follow-up was up to week 64 or clinical/radiological disease. RESULTS: DOM-specific immune responses demonstrated successful vaccine delivery. All patients without measurable disease compared with 60% with advanced disease responded immunologically, while 58% and 20% expanded anti-CAP-1 CD8+ T cells, respectively. CAP-1-specific T cells were only detectable in the blood postvaccination but could also be identified in previously resected cancer tissue. The gastrointestinal adverse event diarrhea was reported by 48% of patients and linked to more frequent decreases in CEA (P < 0.001) and improved global immunologic responses [anti-DOM responses of greater magnitude (P < 0.001), frequency (P = 0.004), and duration] compared with patients without diarrhea. In advanced disease patients, decreases in CEA were associated with better overall survival (HR = 0.14, P = 0.017). CAP-1 peptide was detectable on MHC class I of normal bowel mucosa and primary colorectal cancer tissue by mass spectrometry, offering a mechanistic explanation for diarrhea through CD8+ T-cell attack. CONCLUSIONS: Our data suggest that DNA vaccination is able to overcome peripheral tolerance in normal and tumor tissue and warrants testing in combination studies, for example, by vaccinating in parallel to treatment with an anti-PD1 antibody. Clin Cancer Res; 22(19); 4827-36. ©2016 AACR.