Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(35): e2302083120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607224

RESUMO

Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in these drug targets is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein encoded as a small domain at the N terminus of nonstructural protein 3. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and IFN-stimulated gene expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Vírus da Hepatite Murina , Animais , Camundongos , SARS-CoV-2/genética , Técnicas de Cultura de Células , Linhagem Celular , Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio/genética
2.
J Virol ; 97(9): e0088523, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37695054

RESUMO

ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD+ to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a murine hepatitis virus (MHV) Mac1 mutant virus in bone-marrow-derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo, we produced PARP12-/-mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and mice. In addition, liver pathology was also increased in A59-infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.


Assuntos
Genes Virais , Vírus da Hepatite Murina , Mutação , Poli(ADP-Ribose) Polimerases , Replicação Viral , Animais , Camundongos , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Interferons/imunologia , Camundongos Knockout , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/crescimento & desenvolvimento , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/patogenicidade , Especificidade de Órgãos , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Replicação Viral/genética , Linhagem Celular
3.
J Cell Physiol ; 237(5): 2503-2515, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35224740

RESUMO

Epithelial-mesenchymal transition (EMT) is a physiological process that is essential during embryogenesis and wound healing and also contributes to pathologies including fibrosis and cancer. EMT is characterized by marked gene expression changes, loss of cell-cell contacts, remodeling of the cytoskeleton, and acquisition of enhanced motility. In the late stages of EMT, cells can exhibit myofibroblast-like properties with enhanced expression of the mesenchymal protein marker α-smooth muscle actin and contractile activity. Transforming growth factor (TGF)-ß1 is a well-known inducer of EMT and it activates a plethora of signaling cascades including extracellular signal-regulated kinase (ERK). Previous reports have demonstrated a role for ERK signaling in the early stages of EMT, but the molecular impacts of ERK signaling on the late stages of EMT are still unknown. Here, we found that inhibition of the phosphorylation of ERK enhances focal adhesions, stress fiber formation, cell contractility, and gene expression changes associated with TGFß1-induced EMT in mammary epithelial cells. These effects are mediated in part by the phosphorylation state and subcellular localization of myocardin-related transcription factor-A. These findings indicate that the intricate crosstalk between signaling cascades plays an important role in regulating the progression of EMT and suggests new approaches to control EMT processes.


Assuntos
Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular , Transativadores/metabolismo , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
4.
J Virol ; 95(15): e0076621, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011547

RESUMO

All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in nonstructural protein 3 (nsp3) that binds and hydrolyzes mono-ADP-ribose (MAR) covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutation of a highly conserved asparagine residue, which makes contact with the distal ribose of ADP-ribose. To determine if additional Mac1 activities contribute to CoV replication, we compared the replication of murine hepatitis virus (MHV) Mac1 mutants, D1329A and N1465A, to the previously mentioned asparagine mutant, N1347A. These residues contact the adenine and proximal ribose in ADP-ribose, respectively. N1465A had no effect on MHV replication or pathogenesis, while D1329A and N1347A both replicated poorly in bone marrow-derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo. Interestingly, D1329A was also significantly more attenuated than N1347A in all cell lines tested. Conversely, D1329A retained some ability to block beta interferon (IFN-ß) transcript accumulation compared to N1347A, indicating that these mutations have different effects on Mac1 functions. Combining these two mutations resulted in a virus that was unrecoverable, suggesting that the combined activities of Mac1 are essential for MHV replication. We conclude that Mac1 has multiple functions that promote the replication of MHV, and that these results provide further evidence that Mac1 is a prominent target for anti-CoV therapeutics. IMPORTANCE In the wake of the COVID-19 epidemic, there has been a surge to better understand how CoVs replicate and to identify potential therapeutic targets that could mitigate disease caused by SARS-CoV-2 and other prominent CoVs. The highly conserved macrodomain, also termed Mac1, is a small domain within nonstructural protein 3. It has received significant attention as a potential drug target, as previous studies demonstrated that it is essential for CoV pathogenesis in multiple animal models of infection. However, the functions of Mac1 during infection remain largely unknown. Here, using targeted mutations in different regions of Mac1, we found that Mac1 has multiple functions that promote the replication of MHV, a model CoV, and, therefore, is more important for MHV replication than previously appreciated. These results will help guide the discovery of these novel functions of Mac1 and the development of inhibitory compounds targeting this domain.


Assuntos
Vírus da Hepatite Murina/fisiologia , Mutação de Sentido Incorreto , Proteínas não Estruturais Virais , Replicação Viral/genética , Substituição de Aminoácidos , Animais , Células HeLa , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
5.
Angew Chem Int Ed Engl ; 59(41): 17958-17965, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32510720

RESUMO

Triene 6π electrocyclization, wherein a conjugated triene undergoes a concerted stereospecific cycloisomerization to a cyclohexadiene, is a reaction of great historical and practical significance. In order to circumvent limitations imposed by the normally harsh reaction conditions, chemists have long sought to develop catalytic variants based upon the activating power of metal-alkene coordination. Herein, we demonstrate the first successful implementation of such a strategy by utilizing [(C5 H5 )Ru(NCMe)3 ]PF6 as a precatalyst for the disrotatory 6π electrocyclization of highly substituted trienes that are resistant to thermal cyclization. Mechanistic and computational studies implicate hexahapto transition-metal coordination as responsible for lowering the energetic barrier to ring closure. This work establishes a foundation for the development of new catalysts for stereoselective electrocyclizations.

6.
J Org Chem ; 84(21): 13992-14004, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31549512

RESUMO

Here, we report that trifluoroacetic acid (TFAH) induces demetallation and protodesilylation of the cyclopentadiene ligand in cobalt-η4-cyclopentadiene complexes of general formula [(η5-C5H5)Co(η4-exo-C(TMS)═C(SO2Ph)CH═CRCH(CO2Et))] (1-Ph, R = Ph; 1-ArtBu, R = p-C6H4tBu; 1-ArNMe2, R = p-C6H4NMe2; and 1-Me, R = Me). The trisubstituted cyclopentadiene products are isolated as a mixture of two tautomers, [(CH2C(SO2Ph)═CHC(CO2Et)═CR)] (8-R-A) and [(CH═C(SO2Ph)CH2C(CO2Et)═CR)] (8-R-B). The endo isomer, [(η5-C5H5)Co(η4-endo-C(TMS)═C(SO2Ph)CH═CPhCH(CO2Et))] (1-Ph-endo), also undergoes demetallation and protodesilylation to give 8-Ph-A and 8-Ph-B in excellent yield. The cobalt-cyclopentadiene complex, [(η5-C5H5)Co(η4-exo-C(TMS)═C(SO2Ph)CH═C(CO2Me)CH(CO2Et))] (1-CO2Me), undergoes demetallation and protodesilylation upon treatment with TFAH to give a hydrogen-bonded fulvenol (8-CO2Me). Liberation of the ethoxy-substituted cyclopentadiene ligand of [(η5-C5H5)Co(η4-exo-C(TMS)═C(SO2Ph)CH═C(OEt)CH(CO2Et))] (1-OEt) leads to formation of a cyclopentenone derivative (11). Thermolysis of 8-Ph-A/8-Ph-B in the presence of maleimide leads to a highly functionalized Diels-Alder adduct, whereas 8-Ph-A/8-Ph-B serves as precursors to trisubstituted ruthenocenes by in situ deprotonation and reaction with [(η5-C5R5)Ru(NCMe)3]PF6 (16-H, R = H; 16-Me, R = Me).

7.
J Cell Physiol ; 230(8): 1829-39, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25522130

RESUMO

Myofibroblasts mediate normal wound healing and upon chronic activation can contribute to the development of pathological conditions including organ fibrosis and cancer. Myofibroblasts can develop from epithelial cells through an epithelial-mesenchymal transition (EMT) during which epithelial cells exhibit drastic morphological changes and upregulate cytoskeletal associated proteins that enable exertion of large contractile forces and remodeling of the surrounding microenvironment. Increased matrix rigidity is a hallmark of fibrosis and tumor progression and mechanical tension has been identified as a regulator of EMT; however, the mechanisms governing the mechanical regulation of EMT are not completely understood. Here, we find that matrix rigidity regulates transforming growth factor (TGF)-ß1-induced EMT, with rigid substrata enabling increased myofibroblast marker expression, cell morphology changes, and cytoskeletal reorganization while soft matrices block these changes. Furthermore, we find that matrix rigidity controls the subcellular localization of myocardin related transcription factor (MRTF)-A, a regulator of cytoskeletal protein expression that contributes to the acquisition of myogenic features during EMT. Results from these studies provide insight into how biophysical cues contribute to myofibroblast development from epithelial cells and may suggest ways to enhance wound healing or to engineer therapeutic solutions for fibrosis and cancer.


Assuntos
Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo , Transativadores/metabolismo , Animais , Western Blotting , Células Cultivadas , Células Epiteliais/metabolismo , Imunofluorescência , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Fator de Crescimento Transformador beta1/metabolismo
8.
Korean J Orthod ; 54(3): 142-152, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38618737

RESUMO

Objective: : This retrospective cohort study aimed to assess and compare the accuracy of 3 different Invisalign® treatment regimens in terms of variations of aligner change frequency and type of aligner material in achieving maxillary dental buccal expansion. Methods: : Altogether, 120 adult patients whose treatment involved maxillary dental expansion with Invisalign® were included. The patients were divided into 3 groups, with each group comprising 40 patients as follows: SmartTrack® 1-week changes (ST1), SmartTrack® 2-week changes (ST2), and EX30® 2-week changes (EX2). The groups were assessed by comparing actual changes achieved with those prescribed by ClinCheck®. The rates of clinically significant inaccuracies (CSI) observed for buccal expansion (≥ 0.5 mm) and buccolingual inclination (≥ 2°) during expansion were then determined. Results: : In terms of expansion, the ST1 group demonstrated the highest CSI rate at all tooth levels, whereas the ST2 group had the lowest rate of CSI and the lowest mean inaccuracy for each tooth level. In terms of buccolingual inclination, the ST1 group had the highest CSI rate across all tooth levels, whereas the EX2 group had the lowest CSI rate at all tooth levels except for the canine level where the ST2 group had the lowest CSI rate. A tendency toward overexpression of buccal crown inclination, and underexpression of buccal expansion was observed at all tooth levels. Conclusions: : Two-week aligner change regimens offer improved accuracy compared with 1-week aligner changes. SmartTrack® 2-week changes were the most accurate for buccal expansion, whereas EX30® 2-week changes were the most accurate for buccolingual inclination.

9.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260573

RESUMO

All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication and pathogenesis.

10.
J Am Chem Soc ; 135(24): 8826-9, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23721328

RESUMO

Synthesis of a sterically congested metallacyclobutene complex has led to the first observation of metallacyclobutene-η(3)-vinylcarbene equilibration. The structure of the η(3)-vinylcarbene complex was elucidated by spectroscopy, HRMS, and ab initio computations. The vinylcarbene complex was trapped by reactions with ethyl diazoacetate and (C5H5)Co(PPh3)2 to give cobalt-diene and dicobalt complexes, respectively.

11.
Pathogens ; 12(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37887737

RESUMO

Non-structural protein 3 (nsp3) from all coronaviruses (CoVs) contains a conserved macrodomain, known as Mac1, that has been proposed as a potential therapeutic target for CoVs due to its critical role in viral pathogenesis. Mac1 is an ADP-ribose binding protein and ADP-ribosylhydrolase that promotes replication and blocks IFN responses, though the precise mechanisms it uses to carry out these functions remain unknown. Over the past 3 years following the onset of COVID-19, several groups have used high-throughput screening with multiple assays and chemical modifications to create unique chemical inhibitors of the SARS-CoV-2 Mac1 protein. Here, we summarize the current efforts to identify selective and potent inhibitors of SARS-CoV-2 Mac1.

12.
bioRxiv ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37398292

RESUMO

ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD + to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon, indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a MHV Mac1 mutant virus in bone-marrow derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo , we produced PARP12 -/- mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and in mice. In addition, liver pathology was also increased in A59 infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE: Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Here, using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.

13.
Pathogens ; 12(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37764890

RESUMO

The continued circulation of SARS-CoV-2 and the increasing frequency of coronavirus (CoV) outbreaks over the decades demonstrates the enduring threat that the CoV family poses. There remains a significant need to develop tools to monitor and prevent the spread of these viruses. We tested blood-stabilization reagents from two commercially available blood collection tubes (BCTs) for their ability to inactivate three different coronaviruses (MHV, OC-43, and SARS-CoV-2) and stabilize their RNA. Both Cell-Free DNA BCT® (cfDNA) and Cyto-Chex® BCT (CytoChex) reagents reduced infectious virus in the buffer to below the limit of detection within 18 h of treatment, with some conditions showing this effect in as little as 3 h. CytoChex had more potent activity than cfDNA as in all cases it more rapidly reduced the actively replicating virus to the limit of detection. Despite the rapid inactivation of the virus, both reagents effectively preserved viral RNA for 7 days. Finally, both reagents accelerated viral inactivation in blood compared to the control samples. These results indicate that cfDNA and CytoChex could be used to inactivate and preserve CoV RNA for detection and further testing.

14.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066301

RESUMO

Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in this set of proteins is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and interferon-stimulated gene (ISG) expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target. SIGNIFICANCE: All CoVs, including SARS-CoV-2, encode for a conserved macrodomain (Mac1) that counters host ADP-ribosylation. Prior studies with SARS-CoV-1 and MHV found that Mac1 blocks IFN production and promotes CoV pathogenesis, which has prompted the development of SARS-CoV-2 Mac1 inhibitors. However, development of these compounds into antivirals requires that we understand how SARS-CoV-2 lacking Mac1 replicates and causes disease in vitro and in vivo . Here we found that SARS-CoV-2 containing a complete Mac1 deletion replicates normally in cell culture but induces an elevated IFN response, has reduced viral loads in vivo , and does not cause significant disease in mice. These results will provide a roadmap for testing Mac1 inhibitors, help identify Mac1 functions, and open additional avenues for coronavirus therapies.

15.
bioRxiv ; 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33821264

RESUMO

All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in non-structural protein 3 (nsp3) which binds and hydrolyzes ADP-ribose covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutant of a highly conserved asparagine-to-alanine mutation, which is known to largely eliminate Mac1 ADP-ribosylhydrolase activity. To determine if Mac1 ADP-ribose binding separately contributes to CoV replication, we compared the replication of a murine hepatitis virus (MHV) Mac1 mutant predicted to dramatically reduce ADP-ribose binding, D1329A, to the previously mentioned asparagine mutant, N1347A. D1329A and N1347A both replicated poorly in bone-marrow derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo . However, D1329A was significantly more attenuated than N1347A in all cell lines tested that were susceptible to MHV infection. In addition, D1329A retained some ability to block IFN-ß transcript accumulation compared to N1347A, indicating that these two mutants impacted distinct Mac1 functions. Mac1 mutants predicted to eliminate both binding and hydrolysis activities were unrecoverable, suggesting that the combined activities of Mac1 may be essential for MHV replication. We conclude that Mac1 has multiple roles in promoting the replication of MHV, and that these results provide further evidence that Mac1 could be a prominent target for anti-CoV therapeutics. IMPORTANCE: In the wake of the COVID-19 epidemic, there has been a surge to better understand how CoVs replicate, and to identify potential therapeutic targets that could mitigate disease caused by SARS-CoV-2 and other prominent CoVs. The highly conserved macrodomain, also termed Mac1, is a small domain within non-structural protein 3. It has received significant attention as a potential drug target as previous studies demonstrated that it is essential for CoV pathogenesis in multiple animal models of infection. However, the various roles and functions of Mac1 during infection remain largely unknown. Here, utilizing recombinant Mac1 mutant viruses, we have determined that different biochemical functions of Mac1 have distinct roles in the replication of MHV, a model CoV. These results indicate that Mac1 is more important for CoV replication than previously appreciated, and could help guide the development of inhibitory compounds that target unique regions of this protein domain.

16.
J Am Chem Soc ; 132(32): 11030-2, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20698666

RESUMO

The first demonstration of photochemical enediyne liberation from a metal complex has led to a new class of enediynes, the cyclopentadienidoenediynes, which are demonstrated to exist as air-stable solids with low ionization potentials and large dipole moments. NMR and IR spectroscopy, X-ray crystallography, and ab initio computations enable a comparison with the ubiquitous benzoenediynes.

17.
J Am Chem Soc ; 130(9): 2806-16, 2008 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-18266361

RESUMO

The reaction of diphenyldiazomethane with [((t-BuArO)3tacn)UIII] (1) results in an eta(2)-bound diphenyldiazomethane uranium complex. This complex exhibits unusual electronic properties as a charge-separated species with a radical anionic open-shell ligand, [((t-BuArO)3tacn)UIV(eta2-NNCPh2)] (2). Treating Ph2CN2 with a uranium complex that contains a sterically more demanding adamantane functionalized ligand, [((AdArO)3tacn)UIII] (3) results in an unprecedented C-H activation and nitrogen insertion to produce a five-membered heterocyclic indazole complex, [((AdArO)3tacn)UIV(eta(2)-3-phen(Ind))] (5). X-ray crystallography and spectroscopic characterization of these two compounds show that the [((t-BuArO)3tacn)UIV(eta(2)-NNCPh2)] compound is a U(IV) complex with a radical anionic ligand, whereas [((AdArO)3tacn)UIV(eta(2)-3-phen(Ind))] is a U(IV) f (2) species with a closed-shell ligand.


Assuntos
Diazometano/química , Compostos Organometálicos/química , Urânio/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Estereoisomerismo , Temperatura
18.
J Am Chem Soc ; 130(20): 6567-76, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18439015

RESUMO

The reaction of [((t-Bu)ArO) 3tacn)U (III)] ( 1) with 4,4'-di- tert-butylbenzophenone affords a unique isolable U(IV) ketyl radical species [((t-Bu)ArO) 3tacn)U (IV)(OC* (t-Bu)Ph 2)] (2) supported by XRD data, magnetization measurements, and DFT calculations. Isolation and full characterization of the corresponding diphenyl methoxide complex [((t-Bu)ArO) 3tacn)U (IV)(OCH ( t-Bu )Ph 2)] (3) is also presented. The one-electron reduction of benzophenone by [((Ad)ArO) 3tacn)U (III)] (4) leads to a purple U(IV) ketyl radical intermediate [((Ad)ArO) 3tacn)U (IV)(OC*Ph 2)] (5). This species is highly reactive, and attempts at isolation were unsuccessful and resulted in methoxide complex [((Ad)ArO) 3tacn)U (IV)(OCHPh 2)] (6) from H abstraction and dinuclear para-coupled complex [((Ad)ArO) 3tacn)U (IV)(OCPhPhCPh 2O)U (IV)((Ad)ArO) 3tacn)] (7).


Assuntos
Benzofenonas/química , Urânio/química , Fluorenos/química , Cetonas/química , Ligantes , Magnetismo , Modelos Moleculares , Difração de Raios X
19.
J Am Chem Soc ; 130(31): 10093-5, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18616253

RESUMO

The first productive reactions of a characterized metallacyclobutene complex with alkenes are reported. Thus, the metallacyclobutene complex (eta5-C5H5)(PPh3)Co[kappa2-(C,C)-C(SO2Ph) C(Si(CH3)3)CH(CO2CH2CH3)] (2) undergoes reaction with alkenes to give 1,4-diene complexes with a high degree of regio- and stereoselectivity. A mechanism is proposed in which the metallacyclobutene generates a cyclic vinylcarbene intermediate that undergoes [4 + 2]-cycloaddition reactions with activated alkenes. A model of the vinylcarbene intermediate has been examined using quantum mechanical methods.

20.
Chem Rev ; 111(12): 7904-22, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21978178
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA