RESUMO
MicroRNA (miRNA) are small non-coding RNA involved in post-transcriptional gene regulation. Given their known involvement in early neurodevelopment processes, we here sought to identify common genetic variants associated with altered miRNA expression in the prenatal human brain. We performed small RNA sequencing on brain tissue from 112 genome-wide genotyped fetuses from the second trimester of gestation, identifying high-confidence (false discovery rate < 0.05) expression quantitative trait loci for 30 mature miRNA. Integrating our findings with genome-wide association study data for brain-related disorders, we implicate increased prenatal expression of miR-1908-5p as a risk mechanism for bipolar disorder and find that predicted mRNA targets of miR-1908-5p that are expressed in the fetal brain are enriched for common variant genetic association with the condition. Extending these analyses to other brain-related traits, we find that common genetic variation associated with increased miR-1908-5p expression in fetal brain is additionally associated with depressive symptoms, irritability, increased right cerebellum exterior volume and increased sleep duration in the general population. Our findings provide support to the view that altered miRNA expression can influence susceptibility to neuropsychiatric illness and suggest an early neurodevelopmental risk mechanism for bipolar disorder.
Assuntos
Transtorno Bipolar , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Locos de Características Quantitativas/genética , Transtorno Bipolar/genética , Estudo de Associação Genômica Ampla , Encéfalo/metabolismoRESUMO
The rising prevalence and legalisation of cannabis worldwide have underscored the need for a comprehensive understanding of its biological impact, particularly on mental health. Epigenetic mechanisms, specifically DNA methylation, have gained increasing recognition as vital factors in the interplay between risk factors and mental health. This study aimed to explore the effects of current cannabis use and high-potency cannabis on DNA methylation in two independent cohorts of individuals experiencing first-episode psychosis (FEP) compared to control subjects. The combined sample consisted of 682 participants (188 current cannabis users and 494 never users). DNA methylation profiles were generated on blood-derived DNA samples using the Illumina DNA methylation array platform. A meta-analysis across cohorts identified one CpG site (cg11669285) in the CAVIN1 gene that showed differential methylation with current cannabis use, surpassing the array-wide significance threshold, and independent of the tobacco-related epigenetic signature. Furthermore, a CpG site localised in the MCU gene (cg11669285) achieved array-wide significance in an analysis of the effect of high-potency (THC = > 10%) current cannabis use. Pathway and regional analyses identified cannabis-related epigenetic variation proximal to genes linked to immune and mitochondrial function, both of which are known to be influenced by cannabinoids. Interestingly, a model including an interaction term between cannabis use and FEP status identified two sites that were significantly associated with current cannabis use with a nominally significant interaction suggesting that FEP status might moderate how cannabis use affects DNA methylation. Overall, these findings contribute to our understanding of the epigenetic impact of current cannabis use and highlight potential molecular pathways affected by cannabis exposure.
RESUMO
There has been substantial progress in understanding the genetics of schizophrenia over the past 15 years. This has revealed a highly polygenic condition with the majority of the currently explained heritability coming from common alleles of small effect but with additional contributions from rare copy number and coding variants. Many specific genes and loci have been implicated that provide a firm basis upon which mechanistic research can proceed. These point to disturbances in neuronal, and particularly synaptic, functions that are not confined to a small number of brain regions and circuits. Genetic findings have also revealed the nature of schizophrenia's close relationship to other conditions, particularly bipolar disorder and childhood neurodevelopmental disorders, and provided an explanation for how common risk alleles persist in the population in the face of reduced fecundity. Current genomic approaches only potentially explain around 40% of heritability, but only a small proportion of this is attributable to robustly identified loci. The extreme polygenicity poses challenges for understanding biological mechanisms. The high degree of pleiotropy points to the need for more transdiagnostic research and the shortcomings of current diagnostic criteria as means of delineating biologically distinct strata. It also poses challenges for inferring causality in observational and experimental studies in both humans and model systems. Finally, the Eurocentric bias of genomic studies needs to be rectified to maximise benefits and ensure these are felt across diverse communities. Further advances are likely to come through the application of new and emerging technologies, such as whole-genome and long-read sequencing, to large and diverse samples. Substantive progress in biological understanding will require parallel advances in functional genomics and proteomics applied to the brain across developmental stages. For these efforts to succeed in identifying disease mechanisms and defining novel strata they will need to be combined with sufficiently granular phenotypic data.
Assuntos
Transtorno Bipolar , Esquizofrenia , Humanos , Criança , Esquizofrenia/genética , Transtorno Bipolar/genética , Genoma , Genômica , Emoções , Predisposição Genética para Doença/genética , Estudo de Associação Genômica AmplaRESUMO
Anxiety and depression (emotional disorders) are familial and heritable, especially when onset is early. However, other cross-generational studies suggest transmission of youth emotional problems is explained by mainly environmental risks. We set out to test the contribution of parental non-transmitted genetic liability, as indexed by psychiatric/neurodevelopmental common polygenic liability, to youth emotional problems using a UK population-based cohort: the Millennium Cohort Study. European (N = 6328) and South Asian (N = 814) ancestries were included, as well as a subset with genomic data from both parents (European: N = 2809; South Asian: N = 254). We examined the association of transmitted (PGST) and non-transmitted polygenic scores (PGSNT) for anxiety, depression, bipolar disorder and neurodevelopmental disorders (attention-deficit/hyperactivity disorder [ADHD], autism spectrum disorder [ASD], schizophrenia) with youth emotional disorder and symptom scores, measured using the parent- and self-reported Strengths and Difficulties Questionnaire emotional subscale at 6 timepoints between ages 3-17 years. In the European sample, PGST for anxiety and depression, but not bipolar disorder, were associated with emotional disorder and symptom scores across all ages, except age 3, with strongest association in adolescence. ADHD and ASD PGST also showed association across ages 11-17 years. In the South Asian sample, evidence for associations between all PGST and outcome measures were weaker. There was weak evidence of association between PGSNT for anxiety and depression and age 17 symptom scores in the South Asian sample, but not in the European sample for any outcome. Overall, PGST for depression, anxiety, ADHD and ASD contributed to youth emotional problems, with stronger associations in adolescence. There was limited support for non-transmitted genetic effects: these findings do not support the hypothesis that parental polygenic psychiatric/neurodevelopmental liability confer risk to offspring emotional problems through non-transmitted rearing/nurture effects.
RESUMO
Polygenic risk scores (PRS) have been widely adopted as a tool for measuring common variant liability and they have been shown to predict lifetime risk of Alzheimer's disease (AD) development. However, the relationship between PRS and AD pathogenesis is largely unknown. To this end, we performed a differential gene-expression and associated disrupted biological pathway analyses of AD PRS vs. case/controls in human brain-derived cohort sample (cerebellum/temporal cortex; MayoRNAseq). The results highlighted already implicated mechanisms: immune and stress response, lipids, fatty acids and cholesterol metabolisms, endosome and cellular/neuronal death, being disrupted biological pathways in both case/controls and PRS, as well as previously less well characterised processes such as cellular structures, mitochondrial respiration and secretion. Despite heterogeneity in terms of differentially expressed genes in case/controls vs. PRS, there was a consensus of commonly disrupted biological mechanisms. Glia and microglia-related terms were also significantly disrupted, albeit not being the top disrupted Gene Ontology terms. GWAS implicated genes were significantly and in their majority, up-regulated in response to different PRS among the temporal cortex samples, suggesting potential common regulatory mechanisms. Tissue specificity in terms of disrupted biological pathways in temporal cortex vs. cerebellum was observed in relation to PRS, but limited tissue specificity when the datasets were analysed as case/controls. The largely common biological mechanisms between a case/control classification and in association with PRS suggests that PRS stratification can be used for studies where suitable case/control samples are not available or the selection of individuals with high and low PRS in clinical trials.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Fatores de Risco , Herança Multifatorial , Mitocôndrias/genética , Retículo Endoplasmático , Complexo de Golgi , Análise de Sequência de RNA , Estudo de Associação Genômica Ampla , Predisposição Genética para DoençaRESUMO
Impaired cognition in schizophrenia is associated with worse functional outcomes. While genetic factors are known to contribute to variation in cognition in schizophrenia, few rare coding variants with strong effects have been identified, and the relative effects from de novo, inherited and non-transmitted alleles are unknown. We used array and exome sequencing data from 656 proband-parent trios to examine the contribution of common and rare variants to school performance, and by implication cognitive function, in schizophrenia. Parental transmission of common alleles contributing to higher educational attainment (p value = 0.00015; OR = 2.63) and intelligence (p value = 0.00009; OR = 2.80), but not to schizophrenia, were associated with higher proband school performance. No significant effects were seen for non-transmitted parental common alleles. Probands with lower school performance were enriched for damaging de novo coding variants in genes associated with developmental disorders (DD) (p value = 0.00026; OR = 11.6). Damaging, ultra-rare coding variants in DD genes that were transmitted or non-transmitted from parents, had no effects on school performance. Among probands with lower school performance, those with damaging de novo coding variants in DD genes had a higher rate of comorbid mild intellectual disability (p value = 0.0002; OR = 15.6). Overall, we provide evidence for rare and common genetic contributions to school performance in schizophrenia. The strong effects for damaging de novo coding variants in DD genes provide further evidence that cognitive impairment in schizophrenia has a shared aetiology with developmental disorders. Furthermore, we report no evidence in this sample that non-transmitted parental common alleles for cognitive traits contributed to school performance in schizophrenia via indirect effects on the environment.
Assuntos
Deficiência Intelectual , Esquizofrenia , Humanos , Esquizofrenia/genética , Mutação , Predisposição Genética para Doença/genética , Deficiência Intelectual/genética , FamíliaRESUMO
BACKGROUND: Depression and anxiety are the most common mental health problems in young people. Currently, clinicians are advised to wait before initiating treatment for young people with these disorders as many spontaneously remit. However, others develop recurrent disorder but this subgroup cannot be identified at the outset. We examined whether psychiatric polygenic scores (PGS) could help inform stratification efforts to predict those at higher risk of recurrence. METHODS: Probable emotional disorder was examined in two UK population cohorts using the emotional symptoms subscale of the Strengths and Difficulties Questionnaire (SDQ). Those with emotional disorder at two or more time points between ages 5 and 25 years were classed as 'recurrent emotional disorder' (n = 1,643) and those with emotional disorder at one time point as having 'single episode emotional disorder' (n = 1,435, controls n = 8,715). We first examined the relationship between psychiatric PGS and emotional disorders in childhood and adolescence. Second, we tested whether psychiatric PGS added to predictor variables of known association with emotional disorder (neurodevelopmental comorbidity, special educational needs, family history of depression and socioeconomic status) when discriminating between single-episode and recurrent emotional disorder. Analyses were conducted separately in individuals of European and South Asian ancestry. RESULTS: Probable emotional disorder was associated with higher PGS for major depressive disorder (MDD), anxiety, broad depression, ADHD and autism spectrum disorder (ASD) in those of European ancestry. Higher MDD and broad depression PGS were associated with emotional disorder in people of South Asian ancestry. Recurrent, compared to single-episode, emotional disorder was associated with ASD and parental psychiatric history. PGS were not associated with episode recurrence, and PGS did not improve discrimination of recurrence when combined with clinical predictors. CONCLUSIONS: Our findings do not support the use of PGS as a tool to assess the likelihood of recurrence in young people experiencing their first episode of emotional disorder.
Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Adolescente , Humanos , Transtorno Depressivo Maior/epidemiologia , Transtorno do Espectro Autista/epidemiologia , Comorbidade , Ansiedade/genética , Transtornos de Ansiedade/epidemiologia , Transtornos de Ansiedade/genéticaRESUMO
BACKGROUND: Alcohol use disorder (AUD) and schizophrenia (SCZ) frequently co-occur, and large-scale genome-wide association studies (GWAS) have identified significant genetic correlations between these disorders. METHODS: We used the largest published GWAS for AUD (total cases = 77 822) and SCZ (total cases = 46 827) to identify genetic variants that influence both disorders (with either the same or opposite direction of effect) and those that are disorder specific. RESULTS: We identified 55 independent genome-wide significant single nucleotide polymorphisms with the same direction of effect on AUD and SCZ, 8 with robust effects in opposite directions, and 98 with disorder-specific effects. We also found evidence for 12 genes whose pleiotropic associations with AUD and SCZ are consistent with mediation via gene expression in the prefrontal cortex. The genetic covariance between AUD and SCZ was concentrated in genomic regions functional in brain tissues (p = 0.001). CONCLUSIONS: Our findings provide further evidence that SCZ shares meaningful genetic overlap with AUD.
Assuntos
Alcoolismo , Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Alcoolismo/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para DoençaRESUMO
PURPOSE: The health correlates of polygenic risk (PRS-SCZ) and exposome (ES-SCZ) scores for schizophrenia may vary depending on age and sex. We aimed to examine age- and sex-specific associations of PRS-SCZ and ES-SCZ with self-reported health in the general population. METHODS: Participants were from the population-based Netherlands Mental Health Survey and Incidence Study-2 (NEMESIS-2). Mental and physical health were measured with the 36-item Short Form Survey 4 times between 2007 and 2018. The PRS-SCZ and ES-SCZ were respectively calculated from common genetic variants and exposures (cannabis use, winter birth, hearing impairment, and five childhood adversity categories). Moderation by age and sex was examined in linear mixed models. RESULTS: For PRS-SCZ and ES-SCZ analyses, we included 3099 and 6264 participants, respectively (age range 18-65 years; 55.7-56.1% female). Age and sex did not interact with PRS-SCZ. Age moderated the association between ES-SCZ and mental (interaction: p = 0.02) and physical health (p = 0.0007): at age 18, + 1.00 of ES-SCZ was associated with - 0.10 of mental health and - 0.08 of physical health, whereas at age 65, it was associated with - 0.21 and - 0.23, respectively (all units in standard deviations). Sex moderated the association between ES-SCZ and physical health (p < .0001): + 1.00 of ES-SCZ was associated with - 0.19 of physical health among female and - 0.11 among male individuals. CONCLUSION: There were larger associations between higher ES-SCZ and poorer health among female and older individuals. Accounting for these interactions may increase ES-SCZ precision and help uncover populational determinants of environmental influences on health.
Assuntos
Esquizofrenia , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Esquizofrenia/epidemiologia , Autorrelato , Predisposição Genética para Doença , Fatores de Risco , Estudos de CoortesRESUMO
Large numbers of genetic loci have been identified that are known to contain common risk alleles for schizophrenia, but linking associated alleles to specific risk genes remains challenging. Given that most alleles that influence liability to schizophrenia are thought to do so by altered gene expression, intuitively, case-control differential gene expression studies should highlight genes with a higher probability of being associated with schizophrenia and could help identify the most likely causal genes within associated loci. Here, we test this hypothesis by comparing transcriptome analysis of the dorsolateral prefrontal cortex from 563 schizophrenia cases and 802 controls with genome-wide association study (GWAS) data from the third wave study of the Psychiatric Genomics Consortium. Genes differentially expressed in schizophrenia were not enriched for common allelic association statistics compared with other brain-expressed genes, nor were they enriched for genes within associated loci previously reported to be prioritized by genetic fine-mapping. Genes prioritized by Summary-based Mendelian Randomization were underexpressed in cases compared to other genes in the same GWAS loci. However, the overall strength and direction of expression change predicted by SMR were not related to that observed in the differential expression data. Overall, this study does not support the hypothesis that genes identified as differentially expressed from RNA sequencing of bulk brain tissue are enriched for those that show evidence for genetic associations. Such data have limited utility for prioritizing genes in currently associated loci in schizophrenia.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Encéfalo , Expressão Gênica/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Schizophrenia is a complex highly heritable disorder. Genome-wide association studies (GWAS) have identified multiple loci that influence the risk of developing schizophrenia, although the causal variants driving these associations and their impacts on specific genes are largely unknown. We identify a significant correlation between schizophrenia risk and expression at 89 genes in the dorsolateral prefrontal cortex (P ≤ 9.43 × 10-6), including 20 novel genes. Genes whose expression correlate with schizophrenia were enriched for those involved in abnormal CNS synaptic transmission (PFDR = 0.02) and antigen processing and presentation of peptide antigen via MHC class I (PFDR = 0.02). Within the CNS synaptic transmission set, we identify individual significant candidate genes to which we assign direction of expression changes in schizophrenia. The findings provide strong candidates for experimentally probing the molecular basis of synaptic pathology in schizophrenia.
Assuntos
Esquizofrenia/genética , Esquizofrenia/patologia , Transcriptoma/genética , Encéfalo/metabolismo , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genéticaRESUMO
Many medical treatments, from oncology to psychiatry, can lower white blood cell counts and thus access to these treatments can be restricted to individuals with normal levels of white blood cells, principally in order to minimize risk of serious infection. This adversely affects individuals of African or Middle Eastern ancestries who have on average a reduced number of circulating white blood cells, because of the Duffy-null (CC) genotype at rs2814778 in the ACKR1 gene. Here, we investigate whether the Duffy-null genotype is associated with the risk of infection using the UK Biobank sample and the iPSYCH Danish case-cohort study, two population-based samples from different countries and age ranges. We found that a high proportion of those with the Duffy-null genotype (21%) had a neutrophil count below the threshold often used as a cut-off for access to relevant treatments, compared with 1% of those with the TC/TT genotype. In addition we found that despite its strong association with lower average neutrophil counts, the Duffy-null genotype was not associated with an increased risk of infection, viral or bacterial. These results have widespread implications for the clinical treatment of individuals of African ancestry and indicate that neutrophil thresholds to access treatments could be lowered in individuals with the Duffy-null genotype without an increased risk of infection.
Assuntos
População Negra/genética , Sistema do Grupo Sanguíneo Duffy/genética , Infecções/etiologia , Polimorfismo de Nucleotídeo Único , População Branca/genética , Bancos de Espécimes Biológicos , Estudos de Coortes , Feminino , Genótipo , Humanos , Infecções/patologia , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: It is not clear to what extent associations between schizophrenia, cannabis use and cigarette use are due to a shared genetic etiology. We, therefore, examined whether schizophrenia genetic risk associates with longitudinal patterns of cigarette and cannabis use in adolescence and mediating pathways for any association to inform potential reduction strategies. METHODS: Associations between schizophrenia polygenic scores and longitudinal latent classes of cigarette and cannabis use from ages 14 to 19 years were investigated in up to 3925 individuals in the Avon Longitudinal Study of Parents and Children. Mediation models were estimated to assess the potential mediating effects of a range of cognitive, emotional, and behavioral phenotypes. RESULTS: The schizophrenia polygenic score, based on single nucleotide polymorphisms meeting a training-set p threshold of 0.05, was associated with late-onset cannabis use (OR = 1.23; 95% CI = 1.08,1.41), but not with cigarette or early-onset cannabis use classes. This association was not mediated through lower IQ, victimization, emotional difficulties, antisocial behavior, impulsivity, or poorer social relationships during childhood. Sensitivity analyses adjusting for genetic liability to cannabis or cigarette use, using polygenic scores excluding the CHRNA5-A3-B4 gene cluster, or basing scores on a 0.5 training-set p threshold, provided results consistent with our main analyses. CONCLUSIONS: Our study provides evidence that genetic risk for schizophrenia is associated with patterns of cannabis use during adolescence. Investigation of pathways other than the cognitive, emotional, and behavioral phenotypes examined here is required to identify modifiable targets to reduce the public health burden of cannabis use in the population.
Assuntos
Cannabis , Esquizofrenia , Produtos do Tabaco , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Nicotiana , Estudos Longitudinais , Predisposição Genética para Doença , Fatores de RiscoRESUMO
Genetic variation in CACNA1C, which encodes the alpha-1 subunit of CaV1.2 L-type voltage-gated calcium channels, is strongly linked to risk for psychiatric disorders including schizophrenia and bipolar disorder. To translate genetics to neurobiological mechanisms and rational therapeutic targets, we investigated the impact of mutations of one copy of Cacna1c on rat cognitive, synaptic and circuit phenotypes implicated by patient studies. We show that rats hemizygous for Cacna1c harbour marked impairments in learning to disregard non-salient stimuli, a behavioural change previously associated with psychosis. This behavioural deficit is accompanied by dys-coordinated network oscillations during learning, pathway-selective disruption of hippocampal synaptic plasticity, attenuated Ca2+ signalling in dendritic spines and decreased signalling through the Extracellular-signal Regulated Kinase (ERK) pathway. Activation of the ERK pathway by a small-molecule agonist of TrkB/TrkC neurotrophin receptors rescued both behavioural and synaptic plasticity deficits in Cacna1c+/- rats. These results map a route through which genetic variation in CACNA1C can disrupt experience-dependent synaptic signalling and circuit activity, culminating in cognitive alterations associated with psychiatric disorders. Our findings highlight targeted activation of neurotrophin signalling pathways with BDNF mimetic drugs as a genetically informed therapeutic approach for rescuing behavioural abnormalities in psychiatric disorder.
Assuntos
Transtorno Bipolar , Esquizofrenia , Animais , Canais de Cálcio Tipo L/genética , Cognição , Humanos , Fatores de Crescimento Neural , RatosRESUMO
The majority of common risk alleles identified for neuropsychiatric disorders reside in noncoding regions of the genome and are therefore likely to impact gene regulation. However, the genes that are primarily affected and the nature and developmental timing of these effects remain unclear. Given the hypothesized role for early neurodevelopmental processes in these conditions, we here define genetic predictors of gene expression in the human fetal brain with which we perform transcriptome-wide association studies (TWASs) of attention deficit hyperactivity disorder (ADHD), autism spectrum disorder, bipolar disorder, major depressive disorder, and schizophrenia. We identify prenatal cis-regulatory effects on 63 genes and 166 individual transcripts associated with genetic risk for these conditions. We observe pleiotropic effects of expression predictors for a number of genes and transcripts, including those of decreased DDHD2 expression in association with risk for schizophrenia and bipolar disorder, increased expression of a ST3GAL3 transcript with risk for schizophrenia and ADHD, and increased expression of an XPNPEP3 transcript with risk for schizophrenia, bipolar disorder, and major depression. For the protocadherin alpha cluster genes PCDHA7 and PCDHA8, we find that predictors of low expression are associated with risk for major depressive disorder while those of higher expression are associated with risk for schizophrenia. Our findings support a role for altered gene regulation in the prenatal brain in susceptibility to various neuropsychiatric disorders and prioritize potential risk genes for further neurobiological investigation.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Depressivo Maior , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/genética , Encéfalo , Transtorno Depressivo Maior/genética , Feminino , Expressão Gênica , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Fosfolipases , GravidezRESUMO
Substantial genetic liability is shared across psychiatric disorders but less is known about risk variants that are specific to a given disorder. We used multi-trait conditional and joint analysis (mtCOJO) to adjust GWAS summary statistics of one disorder for the effects of genetically correlated traits to identify putative disorder-specific SNP associations. We applied mtCOJO to summary statistics for five psychiatric disorders from the Psychiatric Genomics Consortium-schizophrenia (SCZ), bipolar disorder (BIP), major depression (MD), attention-deficit hyperactivity disorder (ADHD) and autism (AUT). Most genome-wide significant variants for these disorders had evidence of pleiotropy (i.e., impact on multiple psychiatric disorders) and hence have reduced mtCOJO conditional effect sizes. However, subsets of genome-wide significant variants had larger conditional effect sizes consistent with disorder-specific effects: 15 of 130 genome-wide significant variants for schizophrenia, 5 of 40 for major depression, 3 of 11 for ADHD and 1 of 2 for autism. We show that decreased expression of VPS29 in the brain may increase risk to SCZ only and increased expression of CSE1L is associated with SCZ and MD, but not with BIP. Likewise, decreased expression of PCDHA7 in the brain is linked to increased risk of MD but decreased risk of SCZ and BIP.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Bipolar , Esquizofrenia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Bipolar/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genéticaRESUMO
Genes encoding the mRNA targets of fragile X mental retardation protein (FMRP) are enriched for genetic association with psychiatric disorders. However, many FMRP targets possess functions that are themselves genetically associated with psychiatric disorders, including synaptic transmission and plasticity, making it unclear whether the genetic risk is truly related to binding by FMRP or is alternatively mediated by the sampling of genes better characterised by another trait or functional annotation. Using published common variant, rare coding variant and copy number variant data, we examined the relationship between FMRP binding and genetic association with schizophrenia, major depressive disorder and bipolar disorder. High-confidence targets of FMRP, derived from studies of multiple tissue types, were enriched for common schizophrenia risk alleles, as well as rare loss-of-function and de novo nonsynonymous variants in schizophrenia cases. Similarly, through common variation, FMRP targets were associated with major depressive disorder, and we present novel evidence of association with bipolar disorder. These relationships could not be explained by other functional annotations known to be associated with psychiatric disorders, including those related to synaptic structure and function. This study reinforces the evidence that targeting by FMRP captures a subpopulation of genes enriched for genetic association with a range of psychiatric disorders.
Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Proteína do X Frágil da Deficiência Intelectual , Transtornos Mentais , Esquizofrenia , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Transtornos Mentais/genética , Esquizofrenia/genéticaRESUMO
BACKGROUND: Attention-deficit hyperactivity disorder (ADHD) is associated with later depression and there is considerable genetic overlap between them. This study investigated if ADHD and ADHD genetic liability are causally related to depression using two different methods. METHODS: First, a longitudinal population cohort design was used to assess the association between childhood ADHD (age 7 years) and recurrent depression in young-adulthood (age 18-25 years) in N = 8310 individuals in the Avon Longitudinal Study of Parents and Children (ALSPAC). Second, two-sample Mendelian randomization (MR) analyses examined relationships between genetic liability for ADHD and depression utilising published Genome-Wide Association Study (GWAS) data. RESULTS: Childhood ADHD was associated with an increased risk of recurrent depression in young-adulthood (OR 1.35, 95% CI 1.05-1.73). MR analyses suggested a causal effect of ADHD genetic liability on major depression (OR 1.21, 95% CI 1.12-1.31). MR findings using a broader definition of depression differed, showing a weak influence on depression (OR 1.07, 95% CI 1.02-1.13). CONCLUSIONS: Our findings suggest that ADHD increases the risk of depression later in life and are consistent with a causal effect of ADHD genetic liability on subsequent major depression. However, findings were different for more broadly defined depression.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Causalidade , Depressão/epidemiologia , Adolescente , Adulto , Fatores Etários , Transtorno do Deficit de Atenção com Hiperatividade/genética , Criança , Estudos de Coortes , Depressão/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Estudos Longitudinais , Masculino , Análise da Randomização Mendeliana , Recidiva , Adulto JovemRESUMO
BACKGROUND: Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are generally considered early-onset disorders so most research has therefore tended to focus on children. Differences between ADHD/ASD in adult life and childhood have been noted, but few population-based studies have examined them in adulthood. Furthermore, the interpretation of findings is hampered by changes in measure and from parent report to self-report. METHOD: We examined continuous/trait measures of parent- and self-rated ADHD and ASD in adulthood (age 25 years) in a UK prospective longitudinal sample ALPSAC (the Avon Longitudinal Study of Parents and Children), using many of the same measures that parents reported on in childhood (N = 6,064). Our aim was to investigate these traits in this population for mean-level sex differences, overlaps with other cognitive, learning and communication problems and their associations with polygenic risk scores (PRS) for neuropsychiatric disorders (ADHD, ASD, schizophrenia, depression and anxiety). RESULTS: ADHD and ASD traits in adulthood, as in childhood, showed associations with childhood cognitive, learning and communication problems and adult communication/language measures, although less so for self-ratings than parent-ratings. Males had higher ADHD and ASD trait levels, but this was not as marked as in childhood. In adulthood, ADHD (both parent- and self-rated) and ASD (parent-rated) symptoms showed associations with ADHD PRS; self-reported ADHD also showed association with depression PRS, whereas self-reported ASD did not show strong PRS associations. CONCLUSIONS: Our findings suggest that in young adults, ADHD and ASD symptoms have similar characteristics as they do in childhood. Associations with other cognitive, learning and communication problems, and ADHD PRS were somewhat less pronounced for self-reported adult ADHD and ASD symptoms, suggesting that even at age 25, parent reports, where available, could be clinically useful.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Espectro Autista/epidemiologia , Criança , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Fenótipo , Estudos Prospectivos , Adulto JovemRESUMO
BACKGROUND: The genomic contribution to adverse health sequelae in babies born very preterm (<32 weeks' gestation) is unknown. We conducted an investigation of rare CNVs in infants born very preterm as part of a study to determine the feasibility and acceptability of a larger, well-powered genome-wide investigation in the UK, with follow-up using linked National Health Service records and DNA storage for additional research. METHODS: We studied 488 parent-offspring trios. We performed genotyping using Illumina Infinium OmniExpress Arrays. CNV calling and quality control (QC) were undertaken using published protocols. We examined de novo CNVs in infants and the rate of known pathogenic variants in infants, mothers and fathers and compared these with published comparator data. We defined rare pathogenic CNVs as those consistently reported to be associated with clinical phenotypes. RESULTS: We identified 14 de novo CNVs, representing a mutation rate of 2.9%, compared with 2.1% reported in control populations. The median size of these CNV was much higher than in comparator data (717 kb vs 255 kb). The rate of pathogenic CNVs was 4.3% in infants, 2.7% in mothers and 2% in fathers, compared with 2.3% in UK Biobank participants. CONCLUSION: Our findings suggest that the rate of de novo CNVs, especially rare pathogenic CNVs, could be elevated in those born very preterm. However, we will need to conduct a much larger study to corroborate this conclusion.