Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int Immunol ; 36(7): 365-371, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38442194

RESUMO

The intestinal barrier consists of mucosal, epithelial, and immunological barriers and serves as a dynamic interface between the host and its environment. Disruption of the intestinal barrier integrity is a leading cause of various gastrointestinal diseases, such as inflammatory bowel disease. The homeostasis of the intestinal barrier is tightly regulated by crosstalk between gut microbes and the immune system; however, the implication of the immune system on the imbalance of gut microbes that disrupts barrier integrity remains to be fully elucidated. An inhibitory immunoglobulin-like receptor, Allergin-1, is expressed on mast cells and dendritic cells and inhibits Toll-like receptor (TLR)-2 and TLR-4 signaling in these cells. Since TLRs are major sensors of microbiota and are involved in local epithelial homeostasis, we investigated the role of Allergin-1 in maintaining intestinal homeostasis. Allergin-1-deficient (Milr1-/-) mice exhibited more severe dextran sulfate sodium (DSS)-induced colitis than did wild-type (WT) mice. Milr1-/- mice showed an enhanced intestinal permeability compared with WT mice even before DSS administration. Treatment of Milr1-/- mice with neomycin, but not ampicillin, restored intestinal barrier integrity. The 16S rRNA gene sequencing analysis demonstrated that Bifidobacterium pseudolongum was the dominant bacterium in Milr1-/- mice after treatment with ampicillin. Although the transfer of B. pseudolongum to germ-free WT mice had no effect on intestinal permeability, its transfer into ampicillin-treated WT mice enhanced intestinal permeability. These results demonstrated that Allergin-1 deficiency enhanced intestinal dysbiosis with expanded B. pseudolongum, which contributes to intestinal barrier dysfunction in collaboration with neomycin-sensitive and ampicillin-resistant microbiota.


Assuntos
Disbiose , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Disbiose/imunologia , Camundongos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Sulfato de Dextrana , Microbioma Gastrointestinal/imunologia , Colite/imunologia , Colite/microbiologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Neomicina/farmacologia , Permeabilidade
2.
Nucleic Acids Res ; 51(9): 4536-4554, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36951104

RESUMO

Genome-encoded antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F subfamily (ARE-ABCFs) mediate intrinsic resistance in diverse Gram-positive bacteria. The diversity of chromosomally-encoded ARE-ABCFs is far from being fully experimentally explored. Here we characterise phylogenetically diverse genome-encoded ABCFs from Actinomycetia (Ard1 from Streptomyces capreolus, producer of the nucleoside antibiotic A201A), Bacilli (VmlR2 from soil bacterium Neobacillus vireti) and Clostridia (CplR from Clostridium perfringens, Clostridium sporogenes and Clostridioides difficile). We demonstrate that Ard1 is a narrow spectrum ARE-ABCF that specifically mediates self-resistance against nucleoside antibiotics. The single-particle cryo-EM structure of a VmlR2-ribosome complex allows us to rationalise the resistance spectrum of this ARE-ABCF that is equipped with an unusually long antibiotic resistance determinant (ARD) subdomain. We show that CplR contributes to intrinsic pleuromutilin, lincosamide and streptogramin A resistance in Clostridioides, and demonstrate that C. difficile CplR (CDIF630_02847) synergises with the transposon-encoded 23S ribosomal RNA methyltransferase Erm to grant high levels of antibiotic resistance to the C. difficile 630 clinical isolate. Finally, assisted by uORF4u, our novel tool for detection of upstream open reading frames, we dissect the translational attenuation mechanism that controls the induction of cplR expression upon an antibiotic challenge.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Genes Bacterianos , Bactérias Gram-Positivas , Antibacterianos/farmacologia , Antibacterianos/química , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Nucleosídeos/química , Nucleosídeos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Clostridium/efeitos dos fármacos , Clostridium/genética , Microscopia Crioeletrônica
3.
Appl Environ Microbiol ; 88(23): e0134122, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36416549

RESUMO

The bacterium Leptothrix cholodnii generates filaments encased in a sheath comprised of woven nanofibrils. In static liquid culture, L. cholodnii moves toward the air-liquid interface, where it forms porous pellicles. Observations of aggregation at the interface reveal that clusters consisting of only a few bacteria primarily grow by netting free cells. These growing clusters hierarchically enlarge through the random docking of other small clusters. We find that the bacteria swim using their polar flagellum toward the interface, where their sheath assists them in intertwining with others and thereby promotes the formation of small clusters. In contrast, sheathless hydrophobic mutant cells get stuck to the interface. We find that the nanofibril sheath is vital for robust pellicle formation as it lowers cell surface hydrophobicity by 60%, thereby reducing their adsorption and enabling cells to move toward and stick together at the air-liquid interface. IMPORTANCE Efficient and sustainable management of water resources is becoming a fundamental issue for supporting growing populations and for developing economic activity. Fundamental to this management is the treatment of wastewater. Microorganisms are the active component of activated sludge that is employed in the biodegradation process of many wastewater treatment facilities. However, uncontrolled growth of filamentous bacteria such as Sphaerotilus often results in filamentous bulking, lowering the efficiency of water treatment systems. To prevent this undesirable condition, strategies based on a fundamental understanding of the ecology of filamentous bacteria are required. Although the filamentous bacterium Leptothrix cholodnii, which is closely related to Sphaerotilus, is a minor inhabitant of activated sludge, its complete genome sequence is known, making gene manipulation relatively easy. Moreover, L. cholodnii generates porous pellicles under static conditions, which may be a characteristic of filamentous bulking. We show that both swimming motility and nanofibril-mediated air-liquid interface attachment are required for porous pellicle formation. These insights are critical for a better understanding of the characteristics of filamentous bulking and might improve strategies to control activated sludge.


Assuntos
Leptothrix , Esgotos/microbiologia , Porosidade , Águas Residuárias , Bactérias/metabolismo
4.
Environ Microbiol ; 23(5): 2632-2647, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817925

RESUMO

It is known that Bacillus subtilis releases membrane vesicles (MVs) during the SOS response, which is associated with cell lysis triggered by the PBSX prophage-encoded cell-lytic enzymes XhlAB and XlyA. In this study, we demonstrate that MVs are released under various stress conditions: sucrose fatty acid ester (SFE; surfactant) treatment, cold shock, starvation, and oxygen deficiency. B. subtilis possesses four major host-encoded cell wall-lytic enzymes (autolysins; LytC, LytD, LytE, and LytF). Deletions of the autolysin genes abolished autolysis and the consequent MV production under these stress conditions. In contrast, deletions of xhlAB and xlyA had no effect on autolysis-triggered MV biogenesis, indicating that autolysis is a novel and prophage-independent pathway for MV production in B. subtilis. Moreover, we found that the cell lysis induced by the surfactant treatment was effectively neutralized by the addition of exogenous purified MVs. This result suggests that the MVs can serve as a decoy for the cellular membrane to protect the living cells in the culture from membrane damage by the surfactant. Our results indicate a positive effect of B. subtilis MVs on cell viability and provide new insight into the biological importance of the autolysis phenomenon in B. subtilis.


Assuntos
Bacillus subtilis , N-Acetil-Muramil-L-Alanina Amidase , Autólise , Bacillus subtilis/genética , Membrana Celular , Humanos , N-Acetil-Muramil-L-Alanina Amidase/genética
5.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32948520

RESUMO

Extracellular DNA (eDNA) is a biofilm component that contributes to the formation and structural stability of biofilms. Streptococcus mutans, a major cariogenic bacterium, induces eDNA-dependent biofilm formation under specific conditions. Since cell death can result in the release and accumulation of DNA, the dead cells in biofilms are a source of eDNA. However, it remains unknown how eDNA is released from dead cells and is localized within S. mutans biofilms. We focused on cell death induced by the extracellular signaling peptide called competence-stimulating peptide (CSP). We demonstrate that nucleic acid release into the extracellular environment occurs in a subpopulation of dead cells. eDNA production induced by CSP was highly dependent on the lytF gene, which encodes an autolysin. Although lytF expression was induced bimodally by CSP, lytF-expressing cells further divided into surviving cells and eDNA-producing dead cells. Moreover, we found that lytF-expressing cells were abundant near the bottom of the biofilm, even when all cells in the biofilm received the CSP signal. Dead cells and eDNA were also abundantly present near the bottom of the biofilm. The number of lytF-expressing cells in biofilms was significantly higher than that in planktonic cultures, which suggests that adhesion to the substratum surface is important for the induction of lytF expression. The deletion of lytF resulted in reduced adherence to a polystyrene surface. These results suggest that lytF expression and eDNA production induced near the bottom of the biofilm contribute to a firmly attached and structurally stable biofilm.IMPORTANCE Bacterial communities encased by self-produced extracellular polymeric substances (EPSs), known as biofilms, have a wide influence on human health and environmental problems. The importance of biofilm research has increased, as biofilms are the preferred bacterial lifestyle in nature. Furthermore, in recent years it has been noted that the contribution of phenotypic heterogeneity within biofilms requires analysis at the single-cell or subpopulation level to understand bacterial life strategies. In Streptococcus mutans, a cariogenic bacterium, extracellular DNA (eDNA) contributes to biofilm formation. However, it remains unclear how and where the cells produce eDNA within the biofilm. We focused on LytF, an autolysin that is induced by extracellular peptide signals. We used single-cell level imaging techniques to analyze lytF expression in the biofilm population. Here, we show that S. mutans generates eDNA by inducing lytF expression near the bottom of the biofilm, thereby enhancing biofilm adhesion and structural stability.


Assuntos
Biofilmes , DNA Bacteriano/metabolismo , Matriz Extracelular de Substâncias Poliméricas/fisiologia , Streptococcus mutans/fisiologia , N-Acetil-Muramil-L-Alanina Amidase/análise
6.
J Bacteriol ; 199(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27821608

RESUMO

RNase Y is a major endoribonuclease that plays a crucial role in mRNA degradation and processing. We study the role of RNase Y in the Gram-positive anaerobic pathogen Clostridium perfringens, which until now has not been well understood. Our study implies an important role for RNase Y-mediated RNA degradation and processing in virulence gene expression and the physiological development of the organism. We began by constructing an RNase Y conditional knockdown strain in order to observe the importance of RNase Y on growth and virulence. Our resulting transcriptome analysis shows that RNase Y affects the expression of many genes, including toxin-producing genes. We provide data to show that RNase Y depletion repressed several toxin genes in C. perfringens and involved the virR-virS two-component system. We also observe evidence that RNase Y is indispensable for processing and stabilizing the transcripts of colA (encoding a major toxin collagenase) and pilA2 (encoding a major pilin component of the type IV pili). Posttranscriptional regulation of colA is known to be mediated by cleavage in the 5' untranslated region (5'UTR), and we observe that RNase Y depletion diminishes colA 5'UTR processing. We show that RNase Y is also involved in the posttranscriptional stabilization of pilA2 mRNA, which is thought to be important for host cell adherence and biofilm formation. IMPORTANCE: RNases have important roles in RNA degradation and turnover in all organisms. C. perfringens is a Gram-positive anaerobic spore-forming bacterial pathogen that produces numerous extracellular enzymes and toxins, and it is linked to digestive disorders and disease. A highly conserved endoribonuclease, RNase Y, affects the expression of hundreds of genes, including toxin genes, and studying these effects is useful for understanding C. perfringens specifically and RNases generally. Moreover, RNase Y is involved in processing specific transcripts, and we observed that this processing in C. perfringens results in the stabilization of mRNAs encoding a toxin and bacterial extracellular apparatus pili. Our study shows that RNase activity is associated with gene expression, helping to determine the growth, proliferation, and virulence of C. perfringens.


Assuntos
Clostridium perfringens/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proliferação de Células , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Colagenase Microbiana/genética , Colagenase Microbiana/metabolismo , RNA Bacteriano/genética , RNA Mensageiro/genética , Ribonucleases/genética
7.
Infect Immun ; 85(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28223348

RESUMO

Recently, many Gram-positive bacteria as well as Gram-negative bacteria have been reported to produce membrane vesicles (MVs), but little is known regarding the regulators involved in MV formation. We found that a Gram-positive anaerobic pathogen, Clostridium perfringens, produces MVs predominantly containing membrane proteins and cell wall components. These MVs stimulated proinflammatory cytokine production in mouse macrophage-like cells. We suggested that MVs induced interleukin-6 production through the Toll-like receptor 2 (TLR2) signaling pathway. Thus, the MV could have a role in the bacterium-host interaction and bacterial infection pathogenesis. Moreover, we found that the sporulation master regulator gene spo0A was required for vesiculogenesis. A conserved, phosphorylated aspartate residue of Spo0A was indispensable for MV production, suggesting that the phosphorylation of Spo0A triggers MV production. Multiple orphan sensor kinases necessary for sporulation were also required to maximize MV production. These findings imply that C. perfringens actively produces immunoactive MVs in response to the environment changing, as recognized by membrane-spanning sensor kinases and by modulating the phosphorylation level of Spo0A.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/imunologia , Regulação Bacteriana da Expressão Gênica , Macrófagos/imunologia , Vesículas Secretórias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Clostridium perfringens/metabolismo , Interações Hospedeiro-Patógeno , Interleucina-6 , Camundongos , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo
8.
Biosci Biotechnol Biochem ; 80(1): 7-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26103134

RESUMO

Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Interação Gene-Ambiente , Pseudomonas aeruginosa/genética , Sistemas do Segundo Mensageiro/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Clostridium perfringens/ultraestrutura , AMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Microscopia Eletrônica de Varredura , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestrutura , Percepção de Quorum/genética , Especificidade da Espécie , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Vibrio cholerae/ultraestrutura
9.
J Bacteriol ; 196(8): 1540-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24509316

RESUMO

Biofilm formation has been associated with bacterial pathogenesis, such as nosocomial and chronic infections, as the resistance of biofilms to environmental stresses has increased. Clostridium perfringens is a Gram-positive spore-forming anaerobic pathogen. This organism survives antibiotic treatment through the formation of biofilms or spores, but the environmental and regulatory factors involved in the biofilm formation remain unclear. Here, we observed that temperature regulates C. perfringens biofilm morphology. At 37°C, C. perfringens adhered to the substrate surface and formed a flat, thin biofilm, herein referred to as adhered biofilm. However, at 25°C, this bacterium did not adhere and produced a threadlike extracellular matrix, forming a viscous, thick biofilm, herein referred to as pellicle biofilm. Pellicle biofilm formation requires the sporulation master regulator, Spo0A, and the toxin regulator, CtrAB, and is enhanced in the absence of the global repressor, AbrB. These transcriptional regulator genes are regulated by each other and temperature. Adhered-biofilm formation requires AbrB and pilA2, which encodes a component of type IV pili (TFP). TFP expression was activated at 37°C and regulated through Spo0A, AbrB, and CtrAB. These results indicate that the morphology of C. perfringens biofilm is dependent on temperature through the differential production of extracellular matrix and the activity of TFP. Moreover, pellicle biofilm formation is involved in sporulation and toxin production. Here, we demonstrated that clostridial biofilm formation is closely associated with sporulation and that the morphological change of the biofilms could play an important role in the pathogenesis of this organism.


Assuntos
Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Clostridium perfringens/fisiologia , Clostridium perfringens/efeitos da radiação , Fatores de Transcrição/metabolismo , Clostridium perfringens/metabolismo , Regulação Bacteriana da Expressão Gênica , Temperatura
10.
J Bacteriol ; 196(3): 693-706, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24272782

RESUMO

Bacteria have developed various strategies for phage resistance. Infection with phage induces the transcription of part of the phage resistance gene, but the regulatory mechanisms of such transcription remain largely unknown. The phage resistance gene nonA is located on the SPß prophage region of the Bacillus subtilis Marburg strain genome. The nonA transcript was detected at the late stage of SP10 infection but is undetectable in noninfected cells. The nonA transcript was detected after the induction of the sigma factor Orf199-Orf200 (σ(Orf199-200)), when sigma factors encoded in the SP10 genome were expressed from a xylose-inducible plasmid. Thus, the SP10 sigma factor is an activator of a set of SP10 genes and nonA. The nonA gene encodes a 72-amino-acid protein with a transmembrane motif and has no significant homology with any protein in any database. NonA overexpression halted cell growth and reduced the efficiency of B. subtilis colony formation and respiration activity. In addition, SP10 virion protein synthesis was inhibited in the nonA(+) strain, and SP10 virion particles were scarce in it. These results indicate that NonA is a novel protein that can abort SP10 infection, and its transcription was regulated by SP10 sigma factor.


Assuntos
Fagos Bacilares/fisiologia , Bacillus subtilis/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Prófagos/fisiologia , Transcrição Gênica/fisiologia , Fagos Bacilares/genética , Bacillus subtilis/genética , Genoma Bacteriano , Replicação Viral/fisiologia
11.
Microbiol Resour Announc ; 13(1): e0096523, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014937

RESUMO

Solobacterium moorei JCM 10645T is an obligately anaerobic Gram-positive bacterium that was isolated from a human stool sample, generally known as a bacterium associated with sepsis, bacteremia, halitosis, and periodontal disease. In this study, we report the complete genome sequence of this strain, which is 2.615 Mbp with a 37.2% GC content.

12.
Hum Vaccin Immunother ; 20(1): 2337987, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38658133

RESUMO

There is a growing interest in development of novel vaccines against respiratory tract infections, due to COVID-19 pandemic. Here, we examined mucosal adjuvanticity and the mucosal booster effect of membrane vesicles (MVs) of a novel probiotic E. coli derivative lacking both flagella and potentially carcinogenic colibactin (ΔflhDΔclbP). ΔflhDΔclbP-derived MVs showed rather strong mucosal adjuvanticity as compared to those of a single flagellar mutant strain (ΔflhD-MVs). In addition, glycoengineered ΔflhDΔclbP-MVs displaying serotype-14 pneumococcal capsular polysaccharide (CPS14+MVs) were well-characterized based on biological and physicochemical parameters. Subcutaneous (SC) and intranasal (IN) booster effects of CPS14+MVs on systemic and mucosal immunity were evaluated in mice that have already been subcutaneously prime-immunized with the same MVs. With a two-dose regimen, an IN boost (SC-IN) elicited stronger IgA responses than homologous prime-boost immunization (SC-SC). With a three-dose regimen, serum IgG levels were comparable among all tested regimens. Homologous immunization (SC-SC-SC) elicited the highest IgM responses among all regimens tested, whereas SC-SC-SC failed to elicit IgA responses in blood and saliva. Furthermore, serum IgA and salivary SIgA levels were increased with an increased number of IN doses administrated. Notably, SC-IN-IN induced not only robust IgG response, but also the highest IgA response in both serum and saliva among the groups. The present findings suggest the potential of a heterologous three-dose administration for building both systemic and mucosal immunity, e.g. an SC-IN-IN vaccine regimen could be beneficial. Another important observation was abundant packaging of colibactin in MVs, suggesting increased applicability of ΔflhDΔclbP-MVs in the context of vaccine safety.


Assuntos
Adjuvantes Imunológicos , Escherichia coli , Imunidade nas Mucosas , Imunização Secundária , Camundongos Endogâmicos BALB C , Policetídeos , Probióticos , Animais , Camundongos , Probióticos/administração & dosagem , Escherichia coli/imunologia , Imunização Secundária/métodos , Feminino , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina A , Peptídeos/imunologia , Administração Intranasal , Imunoglobulina G/sangue , Imunoglobulina M , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem
13.
mSystems ; 9(2): e0112323, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38205998

RESUMO

Mammalian gut microbes colonize the intestinal tract of their host and adapt to establish a microbial ecosystem. The host diet changes the nutrient profile of the intestine and has a high impact on microbiota composition. Genetic mutations in Escherichia coli, a prevalent species in the human gut, allow for adaptation to the mammalian intestine, as reported in previous studies. However, the extent of colonization fitness in the intestine elevated by genetic mutation and the effects of diet change on these mutations in E. coli are still poorly known. Here, we show that notable mutations in sugar metabolism-related genes (gatC, araC, and malI) were detected in the E. coli K-12 genome just 2 weeks after colonization in the germ-free mouse intestine. In addition to elevated fitness by deletion of gatC, as previously reported, deletion of araC and malI also elevated E. coli fitness in the murine intestine in a host diet-dependent manner. In vitro cultures of medium containing nutrients abundant in the intestine (e.g., galactose, N-acetylglucosamine, and asparagine) also showed increased E. coli fitness after deletion of the genes-of-interest associated with their metabolism. Furthermore, the host diet was found to influence the developmental trajectory of gene mutations in E. coli. Taken together, we suggest that genetic mutations in E. coli are selected in response to the intestinal environment, which facilitates efficient utilization of nutrients abundant in the intestine under laboratory conditions. Our study offers some insight into the possible adaptation mechanisms of gut microbes.IMPORTANCEThe gut microbiota is closely associated with human health and is greatly impacted by the host diet. Bacteria such as Escherichia coli live in the gut all throughout the life of a human host and adapt to the intestinal environment. Adaptive mutations in E. coli are reported to enhance fitness in the mammalian intestine, but to what extent is still poorly known. It is also unknown whether the host diet affects what genes are mutated and to what extent fitness is affected. This study suggests that genetic mutations in the E. coli K-12 strain are selected in response to the intestinal environment and facilitate efficient utilization of abundant nutrients in the germ-free mouse intestine. Our study provides a better understanding of these intestinal adaptation mechanisms of gut microbes.


Assuntos
Ecossistema , Escherichia coli , Humanos , Animais , Camundongos , Escherichia coli/genética , Dieta , Intestinos/microbiologia , Mutação , Mamíferos
14.
J Bacteriol ; 195(12): 2937-46, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23585542

RESUMO

The Gram-positive anaerobic bacterium Clostridium perfringens is pathogenic to humans and animals, and the production of its toxins is strictly regulated during the exponential phase. We recently found that the 5' leader sequence of the colA transcript encoding collagenase, which is a major toxin of this organism, is processed and stabilized in the presence of the small RNA VR-RNA. The primary colA 5'-untranslated region (5'UTR) forms a long stem-loop structure containing an internal bulge and masks its own ribosomal binding site. Here we found that VR-RNA directly regulates colA expression through base pairing with colA mRNA in vivo. However, when the internal bulge structure was closed by point mutations in colA mRNA, translation ceased despite the presence of VR-RNA. In addition, a mutation disrupting the colA stem-loop structure induced mRNA processing and ColA-FLAG translational activation in the absence of VR-RNA, indicating that the stem-loop and internal bulge structure of the colA 5' leader sequence is important for regulation by VR-RNA. On the other hand, processing was required for maximal ColA expression but was not essential for VR-RNA-dependent colA regulation. Finally, colA processing and translational activation were induced at a high temperature without VR-RNA. These results suggest that inhibition of the colA 5' leader structure through base pairing is the primary role of VR-RNA in colA regulation and that the colA 5' leader structure is a possible thermosensor.


Assuntos
Regiões 5' não Traduzidas , Pareamento de Bases , Clostridium perfringens/enzimologia , Colagenases/biossíntese , Biossíntese de Proteínas , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo , Clostridium perfringens/genética , Colagenases/genética , Conformação de Ácido Nucleico , RNA Antissenso/genética , RNA Mensageiro/genética , Temperatura
15.
Nihon Saikingaku Zasshi ; 78(2): 159-165, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37690815

RESUMO

Many bacteria form biofilms and survive in the actual environment. Biofilms are not only a major form of bacteria but are also involved in tolerance to environmental stresses and antibiotics, suggesting the association with bacterial pathogenesis. Cells within biofilms display phenotypic heterogeneity; thus, even bacteria, unicellular organisms, can functionally differentiate and show multicellular behavior. Therefore, it is necessary to understand bacteria as a population to control their survival and pathogenesis in the actual environment. Previously, we found that Clostridium perfringens, an anaerobic pathogenic bacterium, form different structures in different temperatures and phenotypic heterogeneity on biofilm matrix gene expression within the biofilm. In this article, I summarize the results of our research on biofilms and their heterogeneity, the mechanisms of post-transcriptional gene expression regulation of virulence genes, and bacteria-host interactions mediated by extracellular membrane vesicles.


Assuntos
Biofilmes , Clostridium perfringens , Clostridium perfringens/genética , Clostridium perfringens/patogenicidade , Clostridium perfringens/fisiologia , Virulência , Interações entre Hospedeiro e Microrganismos , Humanos
16.
Microbes Environ ; 38(2)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37302844

RESUMO

Streptococcus mutans is a major caries-causing bacterium that forms firmly attached biofilms on tooth surfaces. Biofilm formation by S. mutans consists of polysaccharide-dependent and polysaccharide-independent processes. Among polysaccharide-independent processes, extracellular DNA (eDNA) mediates the initial attachment of cells to surfaces. We previously reported that the secreted peptide signal, competence-stimulating peptide (CSP) induced cell death in a subpopulation of cells, leading to autolysis-mediated eDNA release. The autolysin gene lytF, the expression of which is stimulated by CSP, has been shown to mediate CSP-dependent cell death, while cell death was not entirely abolished in the lytF deletion mutant, indicating the involvement of other factors. To identify novel genes involved in CSP-dependent cell death, we herein compared transcriptomes between live and dead cells derived from an isogenic population. The results obtained revealed the accumulation of several mRNAs in dead cells. The deletion of SMU_1553c, a putative bacteriocin gene, resulted in significant reductions in CSP-induced cell death and eDNA production levels from those in the parental strain. Moreover, in the double mutant strain of lytF and SMU_1553c, cell death and eDNA production in response to synthetic CSP were completely abolished under both planktonic and biofilm conditions. These results indicate that SMU_1553c is a novel cell death-related factor that contributes to CSP-dependent cell death and eDNA production.


Assuntos
DNA , Streptococcus mutans , Streptococcus mutans/genética , Morte Celular , Comunicação Celular , Biofilmes
17.
Prostate Cancer Prostatic Dis ; 26(2): 323-330, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35418210

RESUMO

BACKGROUND: It is estimated that by 2040 there will be 1,017,712 new cases of prostate cancer worldwide. Androgen deprivation therapy (ADT) is widely used as a treatment option for all disease stages. ADT, and the resulting decline in androgen levels, may indirectly affect gut microbiota. Factors affecting gut microbiota are wide-ranging; however, literature is scarce on the effects of ADT on gut microbiota and metabolome profiles in patients with prostate cancer. METHODS: To study the changes of gut microbiome by ADT, this 24-week observational study investigated the relationship between testosterone levels and changes in gut microbiota in Japanese patients with prostate cancer undergoing ADT. Sequential faecal samples were collected 1 and 2 weeks before ADT, and 1, 4, 12, and 24 weeks after ADT. Blood samples were collected at almost the same times. Bacterial 16 S rRNA gene-based microbiome analyses and capillary electrophoresis-time-of-flight mass spectrometry-based metabolome analyses were performed. RESULTS: In total, 23 patients completed the study. The α- and ß-diversity of gut microbiota decreased significantly at 24 weeks after ADT (p = 0.017, p < 0.001, respectively). Relative abundances of Proteobacteria, Gammaproteobacteria, Pseudomonadales, Pseudomonas, and concentrations of urea, lactate, butyrate, 2-hydroxyisobutyrate and S-adenosylmethionine changed significantly after ADT (p < 0.05). There was a significant positive correlation between the abundance of Proteobacteria, a known indicator of dysbiosis, and the concentration of lactate (R = 0.49, p < 0.01). CONCLUSIONS: The decline in testosterone levels resulted in detrimental changes in gut microbiota. This dysbiosis may contribute to an increase in frailty and an increased risk of adverse outcomes in patients with prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Antagonistas de Androgênios/efeitos adversos , Androgênios , Disbiose/induzido quimicamente , Testosterona , Lactatos
18.
Sci Rep ; 13(1): 22469, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110459

RESUMO

Natto, known for its high vitamin K content, has been demonstrated to suppress atherosclerosis in large-scale clinical trials through a yet-unknown mechanism. In this study, we used a previously reported mouse model, transplanting the bone marrow of mice expressing infra-red fluorescent protein (iRFP) into LDLR-deficient mice, allowing unique and non-invasive observation of foam cells expressing iRFP in atherosclerotic lesions. Using 3 natto strains, we meticulously examined the effects of varying vitamin K levels on atherosclerosis in these mice. Notably, high vitamin K natto significantly reduced aortic staining and iRFP fluorescence, indicative of decreased atherosclerosis. Furthermore, mice administered natto showed changes in gut microbiota, including an increase in natto bacteria within the cecum, and a significant reduction in serum CCL2 expression. In experiments with LPS-stimulated macrophages, adding natto decreased CCL2 expression and increased anti-inflammatory cytokine IL-10 expression. This suggests that natto inhibits atherosclerosis through suppression of intestinal inflammation and reduced CCL2 expression in macrophages.


Assuntos
Aterosclerose , Placa Aterosclerótica , Alimentos de Soja , Animais , Camundongos , Proteína Vermelha Fluorescente , Camundongos Knockout , Aterosclerose/genética , Aterosclerose/terapia , Aterosclerose/metabolismo , Receptores de LDL/metabolismo , Vitamina K , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
19.
Microbes Environ ; 37(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35082176

RESUMO

Membrane vesicles (MVs) released from the bacterium Paracoccus denitrificans Pd1222 are enriched with the quorum sensing (QS) signaling molecule N-hexadecanoyl-l-homoserine lactone (C16-HSL). However, the biogenesis of MVs in Pd1222 remains unclear. Investigations on MV formation are crucial for obtaining a more detailed understanding of the dynamics of MV-assisted signaling. In the present study, live-cell imaging showed that P. denitrificans Pd1222 produced MVs through cell lysis under DNA-damaging conditions. DNA sequencing of MVs and a transcriptome ana-lysis of cells indicated that the expression of a prophage region was up-regulated at the onset of MV formation under DNA-damaging conditions. A further sequence ana-lysis identified a putative endolysin (Pden_0381) and holin (Pden_0382) in the prophage region. The expression of these genes was regulated by RecA. Using gene knockout mutants, we showed that prophage-encoded endolysin was critical for MV formation by P. denitrificans Pd1222 under DNA-damaging conditions. MV triggering by endolysin was dependent on the putative holin, which presumably transported endolysin to the periplasmic space. C16-HSL quantification revealed that more signals were released into the milieu as a consequence of the effects of endolysin. Using a QS reporter strain, we found that the QS response in P. denitrificans was stimulated by inducing the expression of endolysin. Collectively, these results provide novel insights into the mechanisms by which a bacterial cell-to-cell communication system is manipulated by phage genes.


Assuntos
Bacteriófagos , Paracoccus denitrificans , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Transporte Biológico , Paracoccus denitrificans/metabolismo , Percepção de Quorum
20.
J Gen Appl Microbiol ; 68(2): 79-86, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35418538

RESUMO

Paenibacillus polymyxa is a spore-forming Gram-positive bacterial species. Both its sporulation process and the spore properties are poorly understood. Here, we investigated sporulation in P. polymyxa ATCC39564. When cultured at 37℃ for 24 h in sporulation medium, more than 80% of the total cells in the culture were spores. Time-lapse imaging revealed that cellular morphological changes during sporulation of P. polymyxa were highly similar to those of B. subtilis. We demonstrated that genetic deletion of spo0A, sigE, sigF, sigG, or sigK, which are highly conserved transcriptional regulators in spore forming bacteria, abolished spore formation. In P. polymyxa, spo0A was required for cell growth in sporulation medium, as well as for the initiation of sporulation. The sigE and sigF mutants formed abnormal multiple asymmetric septa during the early stage of sporulation. The sigG and sigK mutants formed forespores in the sporangium, but they did not become mature. Moreover, fluorescence reporter analysis confirmed compartment-specific gene expression of spoIID and spoVFA in the mother cell and spoIIQ and sspF in the forespore. Transmission electron microscopy imaging revealed that P. polymyxa produces multilayered endospores but lacking a balloon-shaped exosporium. Our results indicate that spore morphogenesis is conserved between P. polymyxa and B. subtilis. However, P. polymyxa genomes lack many homologues encoding spore-coat proteins that are found in B. subtills, suggesting that there are differences in the spore coat composition and surface structure between P. polymyxa and B. subtilis.


Assuntos
Paenibacillus polymyxa , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Morfogênese , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/metabolismo , Esporos Bacterianos/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA