Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Bioorg Med Chem Lett ; 87: 129266, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011768

RESUMO

Glutaminase converts glutamine into glutamic acid and has two isoforms: glutaminase 1 (GLS1) and glutaminase 2 (GLS2). GLS1 is overexpressed in several tumors, and research to develop glutaminase inhibitors as antitumor drugs is currently underway. The present study examined candidate GLS1 inhibitors using in silico screening and attempted to synthesize novel GLS1 inhibitors and assess their GLS1 inhibitory activities in a mouse kidney extract and against recombinant mouse and human GLS1. Novel compounds were synthesized using compound C as the lead compound, and their GLS1 inhibitory activities were evaluated using the mouse kidney extract. Among the derivatives tested, the trans-4-hydroxycyclohexylamide derivative 2j exhibited the strongest inhibitory activity. We also assessed the GLS1 inhibitory activities of the derivatives 2j, 5i, and 8a against recombinant mouse and human GLS1. The derivatives 5i and 8a significantly decreased the production of glutamic acid at 10 mM. In conclusion, we herein identified two compounds that exhibited GLS1 inhibitory activities with equal potencies as known GLS1 inhibitors. These results will contribute to the development of effective novel GLS1 inhibitors with more potent inhibitory activity.


Assuntos
Ácido Glutâmico , Glutaminase , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Glutamina , Relação Estrutura-Atividade
2.
Bioorg Med Chem Lett ; 93: 129438, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549852

RESUMO

GLS1 is an attractive target not only as anticancer agents but also as candidates for various potential pharmaceutical applications such as anti-aging and anti-obesity treatments. We performed docking simulations based on the complex crystal structure of GLS1 and its inhibitor CB-839 and found that compound A bearing a thiadiazole skeleton exhibits GLS1 inhibition. Furthermore, we synthesized 27 thiadiazole derivatives in an effort to obtain a more potent GLS1 inhibitor. Among the synthesized derivatives, 4d showed more potent GLS1 inhibitory activity (IC50 of 46.7 µM) than known GLS1 inhibitor DON and A. Therefore, 4d is a very promising novel GLS1 inhibitor.


Assuntos
Antineoplásicos , Tiadiazóis , Antineoplásicos/farmacologia , Glutaminase/antagonistas & inibidores , Tiadiazóis/farmacologia , Tiadiazóis/química
3.
Biochem J ; 479(18): 1999-2011, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36098398

RESUMO

Destabilization of human transthyretin leads to its aggregation into amyloid fibrils, which causes a rare, progressive and fatal systemic disorder called ATTR amyloidosis. By contrast, murine transthyretin is known to be very stable and therefore does not aggregate into amyloid fibrils in vivo or in vitro. We examined the hydrophobic residues responsible for the high-stability and low-aggregation properties of murine transthyretin using site-directed mutagenesis. Urea-induced unfolding and thioflavin T fluorescence aggregation assay revealed that Leu73 of murine transthyretin largely contributes to its high stability and low aggregation properties: the I73L mutation stabilized human transthyretin, while the L73I mutation destabilized murine transthyretin. In addition, the I26V/I73L mutation stabilized the amyloidogenic V30M mutant of human transthyretin to the same degree as the suppressor mutation T119M, which protects transthyretin against amyloid fibril aggregation. The I73L mutation resulted in no significant differences in the overall structure of the transthyretin tetramer or the contacts of side-chains in the hydrophobic core of the monomer. We also found that Leu73 of murine transthyretin is conserved in many mammals, while Ile73 of human transthyretin is conserved in monkeys and cats. These studies will provide new insights into the stability and aggregation properties of transthyretin from various mammals.


Assuntos
Amiloidose , Pré-Albumina , Amiloide/química , Amiloide/genética , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mamíferos , Camundongos , Mutação , Pré-Albumina/genética , Ureia
4.
Mol Cell ; 41(2): 186-96, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21255729

RESUMO

Members of the crenarchaeal kingdom, such as Sulfolobus, divide by binary fission yet lack genes for the otherwise near-ubiquitous tubulin and actin superfamilies of cytoskeletal proteins. Recent work has established that Sulfolobus homologs of the eukaryotic ESCRT-III and Vps4 components of the ESCRT machinery play an important role in Sulfolobus cell division. In eukaryotes, several pathways recruit ESCRT-III proteins to their sites of action. However, the positioning determinants for archaeal ESCRT-III are not known. Here, we identify a protein, CdvA, that is responsible for recruiting Sulfolobus ESCRT-III to membranes. Overexpression of the isolated ESCRT-III domain that interacts with CdvA results in the generation of nucleoid-free cells. Furthermore, CdvA and ESCRT-III synergize to deform archaeal membranes in vitro. The structure of the CdvA/ESCRT-III interface gives insight into the evolution of the more complex and modular eukaryotic ESCRT complex.


Assuntos
Proteínas Arqueais/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Sulfolobus/citologia , Proteínas Arqueais/análise , Proteínas Arqueais/química , Complexos Endossomais de Distribuição Requeridos para Transporte/análise , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Regulação da Expressão Gênica em Archaea , Lipossomos/metabolismo , Fases de Leitura Aberta , Estrutura Terciária de Proteína , Transcrição Gênica
5.
Bioorg Med Chem Lett ; 28(3): 441-445, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277459

RESUMO

Most of the endogenous free d-serine (about 90%) in the brain is produced by serine racemase (SR). d-Serine in the brain is involved in neurodegenerative disorders and epileptic states as an endogenous co-agonist of the NMDA-type glutamate receptor. Thus, SR inhibitors are expected to be novel therapeutic candidates for the treatment of these disorders. In this study, we solved the crystal structure of wild-type SR, and tried to identify a new inhibitor of SR by in silico screening using the structural information. As a result, we identified two hit compounds by their in vitro evaluations using wild-type SR. Based on the structure of the more potent hit compound 1, we synthesized 15 derivatives and evaluated their inhibitory activities against wild-type SR. Among them, the compound 9C showed relatively high inhibitory potency for wild-type SR. Compound 9C was a more potent inhibitor than compound 24, which was synthesized by our group based upon the structural information of the mutant-type SR.


Assuntos
Amidas/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Racemases e Epimerases/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Racemases e Epimerases/metabolismo , Relação Estrutura-Atividade
6.
Bioorg Med Chem ; 25(14): 3736-3745, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28533113

RESUMO

Serine racemase (SRR) is an enzyme that produces d-serine from l-serine. d-Serine acts as an endogenous coagonist of NMDA-type glutamate receptors (NMDARs), which regulate many physiological functions. Over-activation of NMDARs induces excitotoxicity, which is observed in many neurodegenerative disorders and epilepsy states. In our previous works on the generation of SRR gene knockout (Srr-KO) mice and its protective effects against NMDA- and Aß peptide-induced neurodegeneration, we hypothesized that the regulation of NMDARs' over-activation by inhibition of SRR activity is one such therapeutic strategy to combat these disease states. In the previous study, we performed in silico screening to identify four compounds with inhibitory activities against recombinant SRR. Here, we synthesized 21 derivatives of candidate 1, one of four hit compounds, and performed screening by in vitro evaluations. The derivative 13J showed a significantly lower IC50 value in vitro, and suppressed neuronal over-activation in vivo.


Assuntos
Acrilamidas/química , Inibidores Enzimáticos/química , Substâncias Protetoras/química , Racemases e Epimerases/antagonistas & inibidores , Tioureia/análogos & derivados , Acrilamidas/administração & dosagem , Acrilamidas/síntese química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligação de Hidrogênio , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Imagem Óptica , Substâncias Protetoras/síntese química , Substâncias Protetoras/farmacologia , Estrutura Terciária de Proteína , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Tioureia/administração & dosagem , Tioureia/síntese química , Tioureia/química
7.
Proc Natl Acad Sci U S A ; 109(43): 17424-9, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045692

RESUMO

The endosomal sorting complexes required for transport (ESCRT) proteins have a critical function in abscission, the final separation of the daughter cells during cytokinesis. Here, we describe the structure and function of a previously uncharacterized ESCRT-III interacting protein, MIT-domain containing protein 1 (MITD1). Crystal structures of MITD1 reveal a dimer, with a microtubule-interacting and trafficking (MIT) domain at the N terminus and a unique, unanticipated phospholipase D-like (PLD) domain at the C terminus that binds membranes. We show that the MIT domain binds to a subset of ESCRT-III subunits and that this interaction mediates MITD1 recruitment to the midbody during cytokinesis. Depletion of MITD1 causes a distinct cytokinetic phenotype consistent with destabilization of the midbody and abscission failure. These results suggest a model whereby MITD1 coordinates the activity of ESCRT-III during abscission with earlier events in the final stages of cell division.


Assuntos
Citocinese/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Fosfolipase D/metabolismo , Cristalografia por Raios X , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína
8.
Bioorg Med Chem Lett ; 24(16): 3732-5, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25066953

RESUMO

D-Serine is a coagonist of the N-methyl-D-aspartate (NMDA)-type glutamate receptor and its biosynthesis is catalyzed by serine racemase (SR). The overactivation of the NMDA receptor has been implicated in the development of neurodegenerative diseases, strokes, and epileptic seizures, thus, the inhibitors of SR have potential against these pathological states. Here, we have developed novel inhibitors of SR by in silico screening and in vitro enzyme assay. The newly developed inhibitors have lower IC50 value comparing with that of malonate, one of the standard SR inhibitor. The structural features of novel inhibitors suggest the importance of central amide structure having a phenoxy substituent in their structure for the SR inhibitory activity. The present findings suggest the importance and rational development of new drugs for diseases of NMDAR overactivation.


Assuntos
Amidas/farmacologia , Inibidores Enzimáticos/farmacologia , Racemases e Epimerases/antagonistas & inibidores , Amidas/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Racemases e Epimerases/metabolismo , Relação Estrutura-Atividade
9.
FEBS J ; 291(8): 1732-1743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38273457

RESUMO

Amyloid fibrils of transthyretin (TTR) consist of full-length TTR and C-terminal fragments starting near residue 50. However, the molecular mechanism underlying the production of the C-terminal fragment remains unclear. Here, we investigated trypsin-induced aggregation and urea-induced unfolding of TTR variants associated with hereditary amyloidosis. Trypsin strongly induced aggregation of variants V30G and V30A, in each of which Val30 in the hydrophobic core of the monomer was mutated to less-bulky amino acids. Variants V30L and V30M, in each of which Val30 was mutated to bulky amino acids, also exhibited trypsin-induced aggregation. On the other hand, pathogenic variant I68L as well as the nonpathogenic V30I did not exhibit trypsin-induced aggregation. The V30G variant was extremely unstable compared with the other variants. The V30G mutation caused the formation of a cavity and the rearrangement of Leu55 in the hydrophobic core of the monomer. These results suggest that highly destabilized transthyretin variants are more susceptible to trypsin digestion.


Assuntos
Amiloidose Familiar , Valina , Humanos , Tripsina/genética , Tripsina/metabolismo , Valina/genética , Pré-Albumina/química , Amiloide/química , Amiloidose Familiar/genética
10.
Biosci Rep ; 44(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38530250

RESUMO

Cyclic GMP-AMP (cGAMP) synthase (cGAS) is activated by binding to DNA. Activated cGAS produces 2'3'-cGAMP, which subsequently binds to the adaptor protein STING (stimulator of interferon genes). This interaction triggers the cGAS/STING signaling pathway, leading to the production of type I interferons. Three types of DNA, namely double-stranded DNA longer than 40 base pairs, a 70-nucleotide single-stranded HIV-1 DNA known as SL2, and Y-form DNA with unpaired guanosine trimers (G3 Y-form DNA), induce interferon production by activating cGAS/STING signaling. However, the extent of cGAS activation by each specific DNA type remains unclear. The comparison of cGAS stimulation by various DNAs is crucial for understanding the mechanisms underlying cGAS-mediated type I interferon production in the innate immune response. Here, we revealed that cGAS produces 2'3'-cGAMP at a significantly lower rate in the presence of single-stranded SL2 DNA than in the presence of double-stranded DNA or G3 Y-form DNA. Furthermore, the guanine-to-cytosine mutations and the deletion of unpaired guanosine trimers significantly reduced the 2'3'-cGAMP production rate and the binding of cGAS to Y-form DNA. These studies will provide new insights into the cGAS-mediated DNA-sensing in immune response.


Assuntos
HIV-1 , Interferon Tipo I , HIV-1/genética , DNA de Cadeia Simples/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA/genética , DNA/metabolismo , Imunidade Inata , Interferon Tipo I/genética , Guanosina
11.
FEBS Lett ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031920

RESUMO

Inducible dimerization systems, such as rapamycin-induced dimerization of FK506 binding protein (FKBP) and FKBP-rapamycin binding (FRB) domain, are widely employed chemical biology tools to manipulate cellular functions. We previously advanced an inducible dimerization system into an inducible oligomerization system by developing a bivalent fusion protein, FRB-FKBP, which forms large oligomers upon rapamycin addition and can be used to manipulate cells. However, the oligomeric structure of FRB-FKBP remains unclear. Here, we report that FRB-FKBP forms a rotationally symmetric trimer in crystals, but a larger oligomer in solution, primarily tetramers and pentamers, which maintain similar inter-subunit contacts as in the crystal trimer. These findings expand the applications of the FRB-FKBP oligomerization system in diverse biological events.

12.
Nature ; 449(7163): 735-9, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17928861

RESUMO

The AAA+ ATPases are essential for various activities such as membrane trafficking, organelle biogenesis, DNA replication, intracellular locomotion, cytoskeletal remodelling, protein folding and proteolysis. The AAA ATPase Vps4, which is central to endosomal traffic to lysosomes, retroviral budding and cytokinesis, dissociates ESCRT complexes (the endosomal sorting complexes required for transport) from membranes. Here we show that, of the six ESCRT--related subunits in yeast, only Vps2 and Did2 bind the MIT (microtubule interacting and transport) domain of Vps4, and that the carboxy-terminal 30 residues of the subunits are both necessary and sufficient for interaction. We determined the crystal structure of the Vps2 C terminus in a complex with the Vps4 MIT domain, explaining the basis for selective ESCRT-III recognition. MIT helices alpha2 and alpha3 recognize a (D/E)xxLxxRLxxL(K/R) motif, and mutations within this motif cause sorting defects in yeast. Our crystal structure of the amino-terminal domain of an archaeal AAA ATPase of unknown function shows that it is closely related to the MIT domain of Vps4. The archaeal ATPase interacts with an archaeal ESCRT-III-like protein even though these organisms have no endomembrane system, suggesting that the Vps4/ESCRT-III partnership is a relic of a function that pre-dates the divergence of eukaryotes and Archaea.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Vacúolos/metabolismo
13.
FEBS Lett ; 597(11): 1479-1488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36976525

RESUMO

An acidic environment in bone is essential for bone metabolism and the production of decarboxylated osteocalcin, which functions as a regulatory hormone of glucose metabolism. Here, we describe the high-resolution X-ray crystal structure of decarboxylated osteocalcin under acidic conditions. Decarboxylated osteocalcin at pH 2.0 retains the α-helix structure of native osteocalcin with three γ-carboxyglutamic acid residues at neutral pH. This implies that decarboxylated osteocalcin is stable under an acidic environment in bone. In addition, site-directed mutagenesis revealed that Glu17 and Glu21 are important for the adiponectin-inducing activity of decarboxylated osteocalcin. These findings suggest that the receptor of decarboxylated osteocalcin responds to the negative charge in helix 1 of osteocalcin.


Assuntos
Adiponectina , Osso e Ossos , Osteocalcina/metabolismo , Osso e Ossos/metabolismo , Ácido 1-Carboxiglutâmico
14.
EMBO J ; 27(1): 234-43, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18046457

RESUMO

Asn-glycosylation is widespread not only in eukaryotes but also in archaea and some eubacteria. Oligosaccharyltransferase (OST) catalyzes the co-translational transfer of an oligosaccharide from a lipid donor to an asparagine residue in nascent polypeptide chains. Here, we report that a thermophilic archaeon, Pyrococcus furiosus OST is composed of the STT3 protein alone, and catalyzes the transfer of a heptasaccharide, containing one hexouronate and two pentose residues, onto peptides in an Asn-X-Thr/Ser-motif-dependent manner. We also determined the 2.7-A resolution crystal structure of the C-terminal soluble domain of Pyrococcus STT3. The structure-based multiple sequence alignment revealed a new motif, DxxK, which is adjacent to the well-conserved WWDYG motif in the tertiary structure. The mutagenesis of the DK motif residues in yeast STT3 revealed the essential role of the motif in the catalytic activity. The function of this motif may be related to the binding of the pyrophosphate group of lipid-linked oligosaccharide donors through a transiently bound cation. Our structure provides the first structural insights into the formation of the oligosaccharide-asparagine bond.


Assuntos
Domínio Catalítico/fisiologia , Hexosiltransferases/química , Proteínas de Membrana/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Carboidratos , Domínio Catalítico/genética , Cristalografia por Raios X , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Dados de Sequência Molecular , Oligossacarídeos/química , Oligossacarídeos/genética , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
15.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 5): 210-216, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35506766

RESUMO

The structure determination of the PX (phox homology) domain of the Saccharomyces cerevisiae Vps17p protein presented a challenging case for molecular replacement because it has noncrystallographic symmetry close to a crystallographic axis. The combination of diffraction-quality crystals grown under microgravity on the International Space Station and a highly accurate template structure predicted by AlphaFold2 provided the key to successful crystal structure determination. Although the structure of the Vps17p PX domain is seen in many PX domains, no basic residues are found around the canonical phosphatidylinositol phosphate (PtdIns-P) binding site, suggesting an inability to bind PtdIns-P molecules.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sítios de Ligação , Cristalografia por Raios X , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
16.
Sci Adv ; 8(10): eabn3264, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275721

RESUMO

d-Serine, a free amino acid synthesized by serine racemase, is a coagonist of N-methyl-d-aspartate-type glutamate receptor (NMDAR). d-Serine in the mammalian central nervous system modulates glutamatergic transmission. Functions of d-serine in mammalian peripheral tissues such as skin have also been described. However, d-serine's functions in nonmammals are unclear. Here, we characterized d-serine-dependent vesicle release from the epidermis during metamorphosis of the tunicate Ciona. d-Serine leads to the formation of a pocket that facilitates the arrival of migrating tissue during tail regression. NMDAR is the receptor of d-serine in the formation of the epidermal pocket. The epidermal pocket is formed by the release of epidermal vesicles' content mediated by d-serine/NMDAR. This mechanism is similar to observations of keratinocyte vesicle exocytosis in mammalian skin. Our findings provide a better understanding of the maintenance of epidermal homeostasis in animals and contribute to further evolutionary perspectives of d-amino acid function among metazoans.


Assuntos
Ciona intestinalis , Ciona , Animais , Ciona/metabolismo , Ciona intestinalis/metabolismo , Epiderme/metabolismo , Mamíferos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo
17.
EMBO J ; 26(22): 4777-87, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17948058

RESUMO

Most mitochondrial proteins are synthesized in the cytosol and imported into mitochondria. The N-terminal presequences of mitochondrial-precursor proteins contain a diverse consensus motif (phi chi chi phi phi, phi is hydrophobic and chi is any amino acid), which is recognized by the Tom20 protein on the mitochondrial surface. To reveal the structural basis of the broad selectivity of Tom20, the Tom20-presequence complex was crystallized. Tethering a presequence peptide to Tom20 through a disulfide bond was essential for crystallization. Unexpectedly, the two crystals with different linker designs provided unique relative orientations of the presequence with respect to Tom20, and neither configuration could fully account for the hydrophobic preference at the three hydrophobic positions of the consensus motif. We propose the existence of a dynamic equilibrium in solution among multiple states including the two bound states. In accordance, NMR 15N relaxation analyses suggested motion on a sub-millisecond timescale at the Tom20-presequence interface. We suggest that the dynamic, multiple-mode interaction is the molecular mechanism facilitating the broadly selective specificity of the Tom20 receptor toward diverse mitochondrial presequences.


Assuntos
Aldeído Desidrogenase/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Aldeído Desidrogenase/química , Cristalização , Cristalografia , Espectroscopia de Ressonância Magnética , Proteínas de Membrana Transportadoras/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Biblioteca de Peptídeos , Peptídeos/química , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/química
18.
Nat Commun ; 12(1): 6565, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782623

RESUMO

Brain inflammation generally accompanies and accelerates neurodegeneration. Here we report a microglial mechanism in which polyglutamine binding protein 1 (PQBP1) senses extrinsic tau 3R/4R proteins by direct interaction and triggers an innate immune response by activating a cyclic GMP-AMP synthase (cGAS)-Stimulator of interferon genes (STING) pathway. Tamoxifen-inducible and microglia-specific depletion of PQBP1 in primary culture in vitro and mouse brain in vivo shows that PQBP1 is essential for sensing-tau to induce nuclear translocation of nuclear factor κB (NFκB), NFκB-dependent transcription of inflammation genes, brain inflammation in vivo, and eventually mouse cognitive impairment. Collectively, PQBP1 is an intracellular receptor in the cGAS-STING pathway not only for cDNA of human immunodeficiency virus (HIV) but also for the transmissible neurodegenerative disease protein tau. This study characterises a mechanism of brain inflammation that is common to virus infection and neurodegenerative disorders.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Encefalite/metabolismo , Proteínas de Membrana/metabolismo , Microglia/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Encéfalo , Proteínas de Ligação a DNA/genética , Encefalite/imunologia , Feminino , HIV , Humanos , Imunidade Inata , Masculino , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Doenças Neurodegenerativas , Nucleotidiltransferases/genética , Tamoxifeno/farmacologia
19.
Biochem Soc Trans ; 37(Pt 1): 151-5, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19143621

RESUMO

The AAA (ATPase associated with various cellular activities) proteins participate in membrane trafficking, organelle biogenesis, DNA replication, intracellular locomotion, cytoskeletal remodelling, protein folding and proteolysis. The AAA Vps (vacuolar protein sorting) 4 is central to traffic to lysosomes, retroviral budding and mammalian cell division. It dissociates ESCRTs (endosomal sorting complexes required for transport) from endosomal membranes, enabling their recycling to the cytosol, and plays a role in fission of intraluminal vesicles within MVBs (multivesicular bodies). The mechanism of Vps4-catalysed disassembly of ESCRT networks is unknown; however, it requires interaction between Vps4 and ESCRT-III subunits. The 30 C-terminal residues of Vps2 and Vps46 (Did2) subunits are both necessary and sufficient for interaction with the Vps4 N-terminal MIT (microtubule-interacting and transport) domain, and the crystal structure of the Vps2 C-terminus in a complex with the Vps4 MIT domain shows that MIT helices alpha2 and alpha3 recognize a (D/E)XXLXXRLXXL(K/R) MIM (MIT-interacting motif). These Vps2-MIT interactions are essential for vacuolar sorting and for Vps4-catalysed disassembly of ESCRT-III networks in vitro. Electron microscopy of ESCRT-III filaments assembled in vitro has enabled us to identify surfaces of the Vps24 subunit that are critical for protein sorting in vivo. The ESCRT-III-Vps4 interaction predates the divergence of Archaea and Eukarya. The Crenarchaea have three classes of ESCRT-III-like subunits, and one of these subunits interacts with an archaeal Vps4-like protein in a manner closely related to the human Vps4-human ESCRT-III subunit Vps20 interaction. This archaeal Vps4-ESCRT-III interaction appears to have a fundamental role in cell division in the Crenarchaea.


Assuntos
Endossomos/metabolismo , Evolução Molecular , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA