Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnobiol Ethnomed ; 20(1): 28, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419092

RESUMO

BACKGROUND: Medicinal plants have been used for centuries and are still relied upon by over 80% of the Ethiopian population. The people of Gamo, southern Ethiopia, have a rich cultural and traditional lifestyle with a long history of using plant resources for various uses including traditional herbal medicine. However, their traditional knowledge of traditional medicinal plants in Boreda Abaya District has not been explored Ethnobotanically yet, despite preserving diverse indigenous traditional medicinal plants. Hence, the study aimed to document and analyze traditional medicinal plants and associated traditional knowledge and practices used by local people. MATERIALS AND METHODS: Quantitative ethnobotanical data were collected via semi-structured interviews, face-to-face conversations, group discussions, and guided field trips between September 2022 and February 2023. In total, 92 informants participated, of which 25 were key informants. Quantitative data indices (informant consensus factor-ICF-and use report-Ur) were computed by MS Excel spreadsheet software. Scientific names of medicinal plants were checked via World Flora Online. RESULTS: In the present study, we recorded 188 traditional medicinal plant species belonging to 163 genera and 73 plant families. Lamiaceae (16 species), Asteraceae (16 species), Fabaceae (11 species), and Euphorbiaceae (8 species) contributed highest number of species and were found to be predominant family in the area. Leaves and seeds were most frequently used plant parts, and pounding (46%) was the main method to prepare remedies. The sudden sickness disease category scored the highest consensus (ICF: 0.35), followed by blood and circulatory-related disease categories (ICF: 0.33). The highest number of plant taxa (61 species) used to treat dermal disease has a 71-use report score, while fewer plant taxa (21 species) were utilized to treat genitourinary system-related disease category, having 25 use reports. Ocimum lamiifolium (Ur:56) and Moringa stenopetala (Ur:51) are widely used species and received highest use report value. CONCLUSION: Gamo people possess extensive traditional knowledge of ethnomedicine. The region's vegetation hosts diverse medicinal species, but deforestation, agriculture, and droughts threaten them. Local conservation practices require scientific support, prioritizing species having higher use reports (Ur), and in-depth investigations of promising species for drug development are essential.


Assuntos
População da África Oriental , Plantas Medicinais , Humanos , Fitoterapia/métodos , Etiópia , Etnobotânica/métodos
2.
Plant Divers ; 46(1): 91-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343590

RESUMO

Climate change poses a serious long-term threat to biodiversity. To effectively reduce biodiversity loss, conservationists need to have a thorough understanding of the preferred habitats of species and the variables that affect their distribution. Therefore, predicting the impact of climate change on species-appropriate habitats may help mitigate the potential threats to biodiversity distribution. Xerophyta, a monocotyledonous genus of the family Velloziaceae is native to mainland Africa, Madagascar, and the Arabian Peninsula. The key drivers of Xerophyta habitat distribution and preference are unknown. Using 308 species occurrence data and eight environmental variables, the MaxEnt model was used to determine the potential distribution of six Xerophyta species in Africa under past, current and future climate change scenarios. The results showed that the models had a good predictive ability (Area Under the Curve and True Skill Statistics values for all SDMs were more than 0.902), indicating high accuracy in forecasting the potential geographic distribution of Xerophyta species. The main bioclimatic variables that impacted potential distributions of most Xerophyta species were mean temperature of the driest quarter (Bio9) and precipitation of the warmest quarter (Bio18). According to our models, tropical Africa has zones of moderate and high suitability for Xerophyta taxa, which is consistent with the majority of documented species localities. The habitat suitability of the existing range of the Xerophyta species varied based on the climate scenario, with most species experiencing a range loss greater than the range gain regardless of the climate scenario. The projected spatiotemporal patterns of Xerophyta species help guide recommendations for conservation efforts.

3.
Heliyon ; 9(6): e17405, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416643

RESUMO

Globally, endemic species and natural habitats have been significantly impacted by climate change, and further considerable impacts are predicted. Therefore, understanding how endemic species are impacted by climate change can aid in advancing the necessary conservation initiatives. The use of niche modeling is becoming a popular topic in biological conservation to forecast changes in species distributions under various climate change scenarios. This study used the Australian Community Climate and Earth System Simulator version 1 (ACCESS-CM2) general circulation model of coupled model intercomparison project phase 6 (CMIP6) to model the current distribution of suitable habitat for the four threatened Annonaceae species endemic to East Africa (EA), to determine the impact of climate change on their suitable habitat in the years 2050 (average for 2041-2060) and 2070 (average for 2061-2080). Two shared socio-economic pathways (SSPs) SSP370 and SSP585 were used to project the contraction and expansion of suitable habitats for Uvariodendron kirkii, Uvaria kirkii, Uvariodendron dzomboense and Asteranthe asterias endemic to Kenya and Tanzania in EA. The current distribution for all four species is highly influenced by precipitation, temperature, and environmental factors (population, potential evapotranspiration, and aridity index). Although the loss of the original suitable habitat is anticipated to be significant, appropriate habitat expansion and contraction are projections for all species. More than 70% and 40% of the original habitats of Uvariodendron dzombense and Uvariodendron kirkii are predicted to be destroyed by climate change, respectively. Based on our research, we suggest that areas that are expected to shrink owing to climate change be classified as important protection zones for the preservation of Annonaceae species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA