RESUMO
Several neurodegenerative disorders are characterized by the accumulation of misfolded proteins and are collectively known as proteinopathies. Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) represent some of the most common neurodegenerative disorders whose steady increase in prevalence is having a major socio-economic impact on our society. Multiple laboratories have reported hundreds of changes in gene expression in selective brain regions of AD, PD, and HD brains. While the mechanisms underlying these changes remain an active area of investigation, alterations in the expression of noncoding RNAs, which are common in AD, PD, and HD, may account for some of the changes in gene expression in proteinopathies. In this review, we discuss the role of miR-128, which is highly expressed in mammalian brains, in AD, PD, and HD. We highlight how alterations in miR-128 may account, at least in part, for the gene expression changes associated with proteinopathies. Indeed, miR-128 is involved, among other things, in the regulation of neuronal plasticity, cytoskeletal organization, and neuronal death, events linked to various proteinopathies. For example, reducing the expression of miR-128 in a mouse model of AD ameliorates cognitive deficits and reduces neuropathology. Overall, the data in the literature suggest that targeting miR-128 might be beneficial to mitigate the behavioral phenotype associated with these diseases.
Assuntos
Doença de Alzheimer , Doença de Huntington , MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Camundongos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/genética , MicroRNAs/genética , Mamíferos/genéticaRESUMO
The prevalence of obesity is rapidly rising around the world, and this will have a significant impact on our society as it is believed to be one of the leading causes of death. One of the main causes of these occurrences is added sugar consumption, which is associated with a higher risk of obesity, heart disease, diabetes, and brain illnesses such as Alzheimer's disease (AD). To this purpose, excess sugar might worsen oxidative damage and brain inflammation: two neuropathological signs of AD. Dimethyl fumarate (DMF) is an orally accessible methyl ester of fumaric acid with putative neuroprotective and immunomodulatory properties. In addition, DMF stimulates the nuclear factor erythroid 2-related factor 2 (Nrf-2), a key regulator of the antioxidant response mechanism in cells. The aim of the current study was to assess the potential therapeutic benefits of DMF in an in vitro model of metabolic stress induced by high and low sugar levels. We discovered that DMF reversed the negative impacts of high and low glucose exposure on the viability and oxidative stress of SH-SY5Y cells. Mechanistically, DMF's actions were mediated by Nrf-2. To this end, we discovered that DMF boosted the expression of the Nrf-2-regulated genes heme-oxygenase-1 (HO1) and manganese superoxide dismutase (MnSOD). More importantly, we found that inhibiting Nrf-2 expression prevented DMF's positive effects. Our combined findings suggest that DMF may be a valuable support for treatments for metabolic diseases.
Assuntos
Doença de Alzheimer , Fumarato de Dimetilo , Fármacos Neuroprotetores , Interferência de RNA , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Linhagem Celular TumoralRESUMO
Neurodegenerative proteinopathies are defined as a class of neurodegenerative disorders, with either genetic or sporadic age-related onset, characterized by the pathological accumulation of aggregated protein deposits. These mainly include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) as well as frontotemporal lobar degeneration (FTLD). The deposition of abnormal protein aggregates in the brain of patients affected by these disorders is thought to play a causative role in neuronal loss and disease progression. On that account, the idea of improving the clearance of pathological protein aggregates has taken hold as a potential therapeutic strategy. Among the possible approaches to pursue for reducing disease protein accumulation, there is the stimulation of the main protein degradation machineries of eukaryotic cells: the ubiquitin proteasomal system (UPS) and autophagy lysosomal pathway (ALP). Of note, several clinical trials testing the efficacy of either UPS- or ALP-active compounds are currently ongoing. Here, we discuss the main gaps and controversies emerging from experimental studies and clinical trials assessing the therapeutic efficacy of modulators of either the UPS or ALP in neurodegenerative proteinopathies, to gather whether they may constitute a real gateway from these disorders. © 2022 International Parkinson and Movement Disorder Society.
Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Humanos , Agregados Proteicos , Proteínas/metabolismo , Proteólise , Ubiquitina/metabolismoRESUMO
Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease represent some of the most prevalent neurodegenerative disorders afflicting millions of people worldwide. Unfortunately, there is a lack of efficacious treatments to cure or stop the progression of these disorders. While the causes of such a lack of therapies can be attributed to various reasons, the disappointing results of recent clinical trials suggest the need for novel and innovative approaches. Since its discovery, there has been a growing excitement around the potential for CRISPR-Cas9 mediated gene editing to identify novel mechanistic insights into disease pathogenesis and to mediate accurate gene therapy. To this end, the literature is rich with experiments aimed at generating novel models of these disorders and offering proof-of-concept studies in preclinical animal models validating the great potential and versatility of this gene-editing system. In this review, we provide an overview of how the CRISPR-Cas9 systems have been used in these neurodegenerative disorders.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética/métodos , Humanos , Doenças Neurodegenerativas/tratamento farmacológicoRESUMO
Articular cartilage is characterized by a poor self-healing capacity due to its aneural and avascular nature. Once injured, it undergoes a series of catabolic processes which lead to its progressive degeneration and the onset of a severe chronic disease called osteoarthritis (OA). In OA, important alterations of the morpho-functional organization occur in the cartilage extracellular matrix, involving all the nearby tissues, including the subchondral bone. Osteochondral engineering, based on a perfect combination of cells, biomaterials and biomolecules, is becoming increasingly successful for the regeneration of injured cartilage and underlying subchondral bone tissue. To this end, recently, several peptides have been explored as active molecules and enrichment motifs for the functionalization of biomaterials due to their ability to be easily chemically synthesized, as well as their tunable physico-chemical features, low immunogenicity issues and functional group modeling properties. In addition, they have shown a good aptitude to penetrate into the tissue due to their small size and stability at room temperature. In particular, growth-factor-derived peptides can play multiple functions in bone and cartilage repair, exhibiting chondrogenic/osteogenic differentiation properties. Among the most studied peptides, great attention has been paid to transforming growth factor-ß and bone morphogenetic protein mimetic peptides, cell-penetrating peptides, cell-binding peptides, self-assembling peptides and extracellular matrix-derived peptides. Moreover, recently, phage display technology is emerging as a powerful selection technique for obtaining functional peptides on a large scale and at a low cost. In particular, these peptides have demonstrated advantages such as high biocompatibility; the ability to be immobilized directly on chondro- and osteoinductive nanomaterials; and improving the cell attachment, differentiation, development and regeneration of osteochondral tissue. In this context, the aim of the present review was to go through the recent literature underlining the importance of studying novel functional motifs related to growth factor mimetic peptides that could be a useful tool in osteochondral repair strategies. Moreover, the review summarizes the current knowledge of the use of phage display peptides in osteochondral tissue regeneration.
Assuntos
Cartilagem Articular , Osteoartrite , Materiais Biocompatíveis/química , Cartilagem Articular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Osteoartrite/terapia , Osteogênese , Peptídeos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/químicaRESUMO
The lack of effective treatments for Alzheimer's disease (AD) is alarming, considering the number of people currently affected by this disorder and the projected increase over the next few decades. Elevated homocysteine (Hcy) levels double the risk of developing AD. Choline, a primary dietary source of methyl groups, converts Hcy to methionine and reduces age-dependent cognitive decline. Here, we tested the transgenerational benefits of maternal choline supplementation (ChS; 5.0 g/kg choline chloride) in two generations (Gen) of APP/PS1 mice. We first exposed 2.5-month-old mice to the ChS diet and allowed them to breed with each other to generate Gen-1 mice. Gen-1 mice were exposed to the ChS diet only during gestation and lactation; once weaned at postnatal day 21, Gen-1 mice were then kept on the control diet for the remainder of their life. We also bred a subset of Gen-1 mice to each other and obtained Gen-2 mice; these mice were never exposed to ChS. We found that ChS reduced Aß load and microglia activation, and improved cognitive deficits in old Gen-1 and Gen-2 APP/PS1 mice. Mechanistically, these changes were linked to a reduction in brain Hcy levels in both generations. Further, RNA-Seq data from APP/PS1 hippocampal tissue revealed that ChS significantly changed the expression of 27 genes. These genes were enriched for inflammation, histone modifications, and neuronal death functional classes. Our results are the first to demonstrate a transgenerational benefit of ChS and suggest that modifying the maternal diet with additional choline reduces AD pathology across multiple generations.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Colina/farmacologia , Suplementos Nutricionais , Homocisteína/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Colina/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos TransgênicosRESUMO
Aging is the major risk factor for several neurodegenerative diseases, including Alzheimer's disease (AD). However, the mechanisms by which aging contributes to neurodegeneration remain elusive. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor that regulates expression of a vast number of genes by binding to the antioxidant response element. Nrf2 levels decrease as a function of age, and reduced Nrf2 levels have been reported in postmortem human brains and animal models of AD. Nevertheless, it is still unknown whether Nrf2 plays a role in the cognitive deficits associated with AD. To address this question, we used a genetic approach to remove the Nrf2 gene from APP/PS1 mice, a widely used animal model of AD. We found that the lack of Nrf2 significantly exacerbates cognitive deficits in APP/PS1, without altering gross motor function. Specifically, we found an exacerbation of deficits in spatial learning and memory, as well as in working and associative memory. Different brain regions control these behavioral tests, indicating that the lack of Nrf2 has a global effect on brain function. The changes in cognition were linked to an increase in Aß and interferon-gamma (IFNγ) levels, and microgliosis. The changes in IFNγ levels are noteworthy as previously published evidence indicates that IFNγ can increase microglia activation and induce Aß production. Our data suggest a clear link between Nrf2 and AD-mediated cognitive decline and further strengthen the connection between Nrf2 and AD.
Assuntos
Doença de Alzheimer/genética , Transtornos Cognitivos/genética , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/metabolismo , Presenilina-1/genéticaRESUMO
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP) are two neurodegenerative disorders characterized by the accumulation of TDP-43. TDP-43 is proteolitically cleaved to generate two major C-terminal fragments of 35 and 25 kDa. The latter, known as TDP-25, is a consistent feature of FTLD-TDP and ALS; however, little is known about its role in disease pathogenesis. We have previously developed transgenic mice overexpressing low levels of TDP-25 (TgTDP-25(+/0)), which at 6 months of age show mild cognitive impairments and no motor deficits. To better understand the role of TDP-25 in the pathogenesis of ALS and FTLD-TDP, we generated TDP-25 homozygous mice (TgTDP-25(+/+)), thereby further increasing TDP-25 expression. We found a gene-dosage effect on cognitive and motor function at 15 months of age, as the TgTDP-25(+/+) showed more severe spatial and working memory deficits as well as worse motor performance than TgTDP-25(+/0) mice. These behavioral deficits were associated with increased soluble levels of TDP-25 in the nucleus and cytosol. Notably, high TDP-25 levels were also linked to reduced autophagy induction and proteasome function, two events that have been associated with both ALS and FTLD-TDP. In summary, we present strong in vivo evidence that high levels of TDP-25 are sufficient to cause behavioral deficits and reduce function of two of the major protein turnover systems: autophagy and proteasome. These mice represent a new tool to study the role of TDP-25 in the pathogenesis of ALS and FTLD-TDP.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Proteólise , Esclerose Lateral Amiotrófica/genética , Animais , Autofagia/genética , Comportamento Animal , Proteínas de Ligação a DNA/genética , Degeneração Lobar Frontotemporal/genética , Humanos , Camundongos , Camundongos Transgênicos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de ProteínaRESUMO
A major obstacle to presymptomatic diagnosis and disease-modifying therapy for Alzheimer's disease (AD) is inadequate understanding of molecular mechanisms of AD pathogenesis. For example, impaired brain insulin signaling is an AD hallmark, but whether and how it might contribute to the synaptic dysfunction and neuron death that underlie memory and cognitive impairment has been mysterious. Neuron death in AD is often caused by cell cycle reentry (CCR) mediated by amyloid-ß oligomers (AßOs) and tau, the precursors of plaques and tangles. We now report that CCR results from AßO-induced activation of the protein kinase complex, mTORC1, at the plasma membrane and mTORC1-dependent tau phosphorylation, and that CCR can be prevented by insulin-stimulated activation of lysosomal mTORC1. AßOs were also shown previously to reduce neuronal insulin signaling. Our data therefore indicate that the decreased insulin signaling provoked by AßOs unleashes their toxic potential to cause neuronal CCR, and by extension, neuron death.
Assuntos
Ciclo Celular/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neurônios/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Humanos , Hidrocefalia de Pressão Normal/metabolismo , Insulina/metabolismo , Lisossomos/metabolismo , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas tau/genética , Proteínas tau/metabolismoRESUMO
Aging is the most important risk factor associated with Alzheimer's disease (AD); however, the molecular mechanisms linking aging to AD remain unclear. Suppression of the ribosomal protein S6 kinase 1 (S6K1) increases healthspan and lifespan in several organisms, from nematodes to mammals. Here we show that S6K1 expression is upregulated in the brains of AD patients. Using a mouse model of AD, we found that genetic reduction of S6K1 improved synaptic plasticity and spatial memory deficits, and reduced the accumulation of amyloid-ß and tau, the two neuropathological hallmarks of AD. Mechanistically, these changes were linked to reduced translation of tau and the ß-site amyloid precursor protein cleaving enzyme 1, a key enzyme in the generation of amyloid-ß. Our results implicate S6K1 dysregulation as a previously unidentified molecular mechanism underlying synaptic and memory deficits in AD. These findings further suggest that therapeutic manipulation of S6K1 could be a valid approach to mitigate AD pathology. SIGNIFICANCE STATEMENT: Aging is the most important risk factor for Alzheimer's disease (AD). However, little is known about how it contributes to AD pathogenesis. S6 kinase 1 (S6K1) is a protein kinase involved in regulation of protein translation. Reducing S6K1 activity increases lifespan and healthspan. We report the novel finding that reducing S6K1 activity in 3xTg-AD mice ameliorates synaptic and cognitive deficits. These improvement were associated with a reduction in amyloid-ß and tau pathology. Mechanistically, lowering S6K1 levels reduced translation of ß-site amyloid precursor protein cleaving enzyme 1 and tau, two key proteins involved in AD pathogenesis. These data suggest that S6K1 may represent a molecular link between aging and AD. Given that aging is the most important risk factor for most neurodegenerative diseases, our results may have far-reaching implications into other diseases.
Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Regulação da Expressão Gênica/fisiologia , Transtornos da Memória/terapia , Plasticidade Neuronal/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Hipocampo/patologia , Humanos , Locomoção/genética , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/etiologia , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/genética , Neurônios/fisiologia , Fragmentos de Peptídeos/metabolismo , Presenilina-1/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais/genética , Proteínas tau/genética , Proteínas tau/metabolismoRESUMO
Accumulation of the microtubule-binding protein tau is a key event in several neurodegenerative disorders referred to as tauopathies, which include Alzheimer's disease, frontotemporal lobar degeneration, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Thus, understanding the molecular pathways leading to tau accumulation will have a major impact across multiple neurodegenerative disorders. To elucidate the pathways involved in tau pathology, we removed the gene encoding the beta-2 adrenergic receptors (ß2ARs) from a mouse model overexpressing mutant human tau. Notably, the number of ß2ARs is increased in brains of AD patients and epidemiological studies show that the use of beta-blockers decreases the incidence of AD. The mechanisms underlying these observations, however, are not clear. We show that the tau transgenic mice lacking the ß2AR gene had a reduced mortality rate compared with the parental tau transgenic mice. Removing the gene encoding the ß2ARs from the tau transgenic mice also significantly improved motor deficits. Neuropathologically, the improvement in lifespan and motor function was associated with a reduction in brain tau immunoreactivity and phosphorylation. Mechanistically, we provide compelling evidence that the ß2AR-mediated changes in tau were linked to a reduction in the activity of GSK3ß and CDK5, two of the major tau kinases. These studies provide a mechanistic link between ß2ARs and tau and suggest the molecular basis linking the use of beta-blockers to a reduced incidence of AD. Furthermore, these data suggest that a detailed pharmacological modulation of ß2ARs could be exploited to develop better therapeutic strategies for AD and other tauopathies.
Assuntos
Receptores Adrenérgicos beta 2/genética , Tauopatias/genética , Proteínas tau/genética , Animais , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Comportamento Animal , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Receptores Adrenérgicos beta 2/deficiência , Transdução de Sinais , Análise de Sobrevida , Tauopatias/metabolismo , Tauopatias/mortalidade , Tauopatias/patologia , Proteínas tau/metabolismoRESUMO
Elevated mammalian target of rapamycin (mTOR) signaling has been found in Alzheimer's disease (AD) patients and is linked to diabetes and aging, two known risk factors for AD. However, whether hyperactive mTOR plays a role in the cognitive deficits associated with AD remains elusive. Here, we genetically reduced mTOR signaling in the brains of Tg2576 mice, a widely used animal model of AD. We found that suppression of mTOR signaling reduced amyloid-ß deposits and rescued memory deficits. Mechanistically, the reduction in mTOR signaling led to an increase in autophagy induction and restored the hippocampal gene expression signature of the Tg2576 mice to wild-type levels. Our results implicate hyperactive mTOR signaling as a previous unidentified signaling pathway underlying gene-expression dysregulation and cognitive deficits in AD. Furthermore, hyperactive mTOR signaling may represent a molecular pathway by which aging contributes to the development of AD.
Assuntos
Doença de Alzheimer/complicações , Transtornos Cognitivos , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Hipocampo/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/terapia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Humanos , Imunossupressores/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genéticaRESUMO
The accumulation of TDP-43 (transactive response DNA-binding protein 43) and its 25 kDa C-terminal fragment (TDP-25) is a hallmark of several neurodegenerative disorders, including frontotemporal lobar degeneration (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). The majority of FTLD-TDP cases are due to loss of function mutations in the gene encoding progranulin, a secreted growth factor. In ALS, specific mutations in the gene encoding TDP-43 have been linked to the disease pathogenesis. In both cases, however, the penetrance of the mutations greatly increases during aging, suggesting that other genetic or environmental factors may facilitate the development of the disease. Using transgenic mice that overexpress the 25 kDa C-terminal fragment of TDP-43, here we show that glucocorticoids, stress hormones known to increase the brain susceptibility to neurotoxic insults, increase the levels of soluble TDP-25 and exacerbate cognitive deficits, without altering full-length TDP-43 levels. Additionally, we show that the mechanism underlying the glucocorticoid-mediated increase in TDP-25 levels is coupled to changes in the glutathione redox state. Glutathione is an antioxidant involved in protecting cells from damage caused by reactive oxygen species; notably, alterations in the ratio of reduced to oxidized glutathione, which is the primary determinant of the cellular redox state, are associated with aging and neurodegeneration. We show that restoring the ratio of reduced to oxidized glutathione blocks the glucocorticoid effects on TDP-25. These data show that glucocorticoids potentiate the neurotoxic action of TDP-25 by increasing its levels and clearly indicate the role of cellular oxidative damage in this process.
Assuntos
Envelhecimento/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Glutationa/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Proteinopatias TDP-43/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação a DNA/genética , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Dissulfeto de Glutationa/metabolismo , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologiaRESUMO
Alzheimer disease (AD) is characterized by neurodegeneration marked by loss of synapses and spines associated with hyperphosphorylation of tau protein. Accumulating amyloid ß peptide (Aß) in brain is linked to neurofibrillary tangles composed of hyperphosphorylated tau in AD. Here, we identify ß2-adrenergic receptor (ß2AR) that mediates Aß-induced tau pathology. In the prefrontal cortex (PFC) of 1-year-old transgenic mice with human familial mutant genes of presenilin 1 and amyloid precursor protein (PS1/APP), the phosphorylation of tau at Ser-214 Ser-262 and Thr-181, and the protein kinases including JNK, GSK3α/ß, and Ca(2+)/calmodulin-dependent protein kinase II is increased significantly. Deletion of the ß2AR gene in PS1/APP mice greatly decreases the phosphorylation of these proteins. Further analysis reveals that in primary PFC neurons, Aß signals through a ß2AR-PKA-JNK pathway, which is responsible for most of the phosphorylation of tau at Ser-214 and Ser-262 and a significant portion of phosphorylation at Thr-181. Aß also induces a ß2AR-dependent arrestin-ERK1/2 activity that does not participate in phosphorylation of tau. However, inhibition of the activity of MEK, an upstream enzyme of ERK1/2, partially blocks Aß-induced tau phosphorylation at Thr-181. The density of dendritic spines and synapses is decreased in the deep layer of the PFC of 1-year-old PS1/APP mice, and the mice exhibit impairment of learning and memory in a novel object recognition paradigm. Deletion of the ß2AR gene ameliorates pathological effects in these senile PS1/APP mice. The study indicates that ß2AR may represent a potential therapeutic target for preventing the development of AD.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores Adrenérgicos beta 2/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Arrestina/genética , Arrestina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Receptores Adrenérgicos beta 2/genética , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologiaRESUMO
Naked mole rats (NMRs) are the longest-lived rodents, with young individuals having high levels of Aß in their brains. The purpose of this study was twofold: to assess the distribution of Aß in key regions of NMR brains (cortex, hippocampus, cerebellum) and to understand whether the accumulation of Aß is due to enhanced production or decreased degradation. Recent evidence indicates that lipid peroxides directly participate in induction of cytoprotective proteins, such as heat shock proteins (Hsps), which play a central role in the cellular mechanisms of stress tolerance. Amyloid precursor protein processing, lipid peroxidation, Hsps, redox status, and protein degradation processes were therefore assessed in key NMR brain regions. NMR brains had high levels of lipid peroxidation compared with mice, and the NMR hippocampus had the highest levels of the most toxic moiety of Aß (soluble Aß1 - 42 ). This was due not to increased Aß production but rather to low antioxidant potential, which was associated with low induction of Hsp70 and heme oxygenase-1 as well as low ubiquitin-proteasome activity. NMRs may therefore serve as natural models for understanding the relationship between oxidative stress and Aß levels and its effects on the brain.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo/fisiologia , Animais , Encéfalo/patologia , Immunoblotting , Peroxidação de Lipídeos/fisiologia , Ratos-ToupeiraRESUMO
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss, imposing a significant burden on affected individuals and their families. Despite the recent promising progress in therapeutic approaches, more needs to be done to understand the intricate molecular mechanisms underlying the development and progression of AD. Growing evidence points to epigenetic changes as playing a pivotal role in the pathogenesis of the disease. The dynamic interplay between genetic and environmental factors influences the epigenetic landscape in AD, altering gene expression patterns associated with key pathological events associated with disease pathogenesis. To this end, epigenetic alterations not only impact the expression of genes implicated in AD pathogenesis but also contribute to the dysregulation of crucial cellular processes, including synaptic plasticity, neuroinflammation, and oxidative stress. Understanding the complex epigenetic mechanisms in AD provides new avenues for therapeutic interventions. This review comprehensively examines the role of DNA methylation and histone modifications in the context of AD. It aims to contribute to a deeper understanding of AD pathogenesis and facilitate the development of targeted therapeutic strategies.
Assuntos
Doença de Alzheimer , Metilação de DNA , Epigênese Genética , Código das Histonas , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Metilação de DNA/genética , Código das Histonas/genética , Histonas/metabolismo , AnimaisRESUMO
Phage display is widely used in biomedical research. One of the great advantages of phage display is the specificity of the connection of a foreign peptide exposed outside the capsid to the intended target. Secondary detection systems, which are often laborious and costly, are required to identify and quantify the peptide/target interaction. In this study, we generated a novel dual-display phage to facilitate the detection and quantification of the peptide/target interaction. First, we generated a biotin-tagged phage by adding a small biotin-accepting peptide (sBT) to gene-3 of the M13K07 helper phage. Subsequently, we enhanced the M13K07 biotin-tagged phage by incorporating a selective peptide on gene-8, which is then exposed to the phage capsid. The exposed peptide acts as a probe to bind to a selective molecular target, whose interaction can be readily visualized thanks to the biotinylated phage. Our versatile dual-display phage exhibits high flexibility; by swapping the displayed peptide/probe, one can change the phage target while retaining the sBT gene in-frame with the pIII. We expect the generated biotin-tagged dual phages to be used as a multifunctional probe to couple with several streptavidin-biotin-based systems.
Assuntos
Biotina , Biblioteca de Peptídeos , Biotina/metabolismo , Bacteriófago M13/genética , Peptídeos/metabolismo , Peptídeos/genética , Estreptavidina/metabolismo , Biotinilação , Técnicas de Visualização da Superfície Celular/métodosRESUMO
Potassium (K(+)) channels are essential to neuronal signaling and survival. Here we show that these proteins are targets of reactive oxygen species in mammalian brain and that their oxidation contributes to neuropathy. Thus, the KCNB1 (Kv2.1) channel, which is abundantly expressed in cortex and hippocampus, formed oligomers upon exposure to oxidizing agents. These oligomers were â¼10-fold more abundant in the brain of old than young mice. Oxidant-induced oligomerization of wild-type KCNB1 enhanced apoptosis in neuronal cells subject to oxidative insults. Consequently, a KCNB1 variant resistant to oxidation, obtained by mutating a conserved cysteine to alanine, (C73A), was neuroprotective. The fact that oxidation of KCNB1 is toxic, argues that this mechanism may contribute to neuropathy in conditions characterized by high levels of oxidative stress, such as Alzheimer's disease (AD). Accordingly, oxidation of KCNB1 channels was exacerbated in the brain of a triple transgenic mouse model of AD (3xTg-AD). The C73A variant protected neuronal cells from apoptosis induced by incubation with ß-amyloid peptide (Aß(1-42)). In an invertebrate model (Caenorhabditis elegans) that mimics aspects of AD, a C73A-KCNB1 homolog (C113S-KVS-1) protected specific neurons from apoptotic death induced by ectopic expression of human Aß(1-42). Together, these data underscore a novel mechanism of toxicity in neurodegenerative disease.
Assuntos
Encéfalo/citologia , Neurônios/fisiologia , Estresse Oxidativo/fisiologia , Canais de Potássio Shab/fisiologia , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/toxicidade , Fatores Etários , Alanina/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Caenorhabditis elegans , Células Cultivadas , Cricetinae , Cricetulus , Cisteína/genética , Modelos Animais de Doenças , Dissulfetos/toxicidade , Estimulação Elétrica , Embrião de Mamíferos , Feminino , Fluoresceínas/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Espectrometria de Massas/métodos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Neurônios/efeitos dos fármacos , Oxidantes/toxicidade , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/toxicidade , Presenilina-1/genética , Propanóis/farmacologia , Canais de Potássio Shab/genética , TransfecçãoRESUMO
Transactive response DNA-binding protein 43 (TDP-43) is the pathological signature protein in several neurodegenerative disorders, including the majority of frontotemporal lobar degeneration cases (FTLD-TDP), motor neuron disease, and amyotrophic lateral sclerosis. Pathological TDP-43 is mislocalized from its nuclear location to the cytoplasm, where it accumulates and is proteolytically cleaved to form C-terminal fragments. Although the 25-kDa C-terminal fragment of TDP-43 (TDP-25) accumulates in affected brain regions, its role in the disease pathogenesis remains elusive. To address this problem, we have generated a novel transgenic mouse that selectively expresses TDP-25 in neurons. We show that transgenic mice expressing TDP-25 develop cognitive deficits associated with the build-up of soluble TDP-25. These cognitive deficits are independent of TDP-43-positive inclusions and occur without overt neurodegeneration. Additionally, we show that the expression of TDP-25 is sufficient to alter the processing of endogenous full-length TDP-43. These studies represent the first in vivo demonstration of a pathological role for TDP-25 and strongly suggest that the onset of cognitive deficits in TDP-43 proteinopathies is independent of TDP-43 inclusions. These data provide a framework for understanding the molecular mechanisms underlying the onset of cognitive deficits in FTLD-TDP and other TDP-43 proteinopathies; thus, the TDP-25 transgenic mice represent a unique tool to reach this goal.
Assuntos
Transtornos Cognitivos/etiologia , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/psicologia , Proteinopatias TDP-43/psicologia , Animais , Transtornos Cognitivos/metabolismo , Função Executiva/fisiologia , Degeneração Lobar Frontotemporal/metabolismo , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Reconhecimento Psicológico/fisiologia , Proteinopatias TDP-43/metabolismoRESUMO
Cognitive dysfunction and memory loss are common features of Alzheimer's disease (AD). Abnormalities in the expression profile of immediate early genes that play a critical role in memory formation, such as the cAMP-response element binding protein (CREB), have been reported in the brains of AD patients. Here we show that amyloid-ß (Aß) accumulation, which plays a primary role in the cognitive deficits of AD, interferes with CREB activity. We further show that restoring CREB function via brain viral delivery of the CREB-binding protein (CBP) improves learning and memory deficits in an animal model of AD. Notably, such improvements occur without changes in Aß and tau pathology, and instead are linked to an increased level of brain-derived neurotrophic factor. The resulting data suggest that Aß-induced learning and memory deficits are mediated by alterations in CREB function, based on the finding that restoring CREB activity by directly modulating CBP levels in the brains of adult mice is sufficient to ameliorate learning and memory. Therefore, increasing CBP expression in adult brains may be a valid therapeutic approach not only for AD, but also for various brain disorders characterized by alterations in immediate early genes, further supporting the concept that viral vector delivery may be a viable therapeutic approach in neurodegenerative diseases.