Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Ecol ; 33(6): e17285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288563

RESUMO

Understanding how spatial patterns of mating and gene flow respond to habitat loss and geographical isolation is a crucial aspect of forest fragmentation genetics. Naturally fragmented riparian tree populations exhibit unique characteristics that significantly influence these patterns. In this study, we investigate mating patterns, pollen-mediated gene flow, and genetic diversity in relict populations of Frangula alnus in southern Spain by testing specific hypotheses related to the riparian habitat. We employ a novel approach that combines paternity analysis, particularly suited for small and isolated populations, with complex network theory and Bayesian models to predict mating likelihood among tree pairs. Our findings reveal a prevalence of short-distance pollination, resulting in spatially driven local mating clusters with a distinct subset of trees being highly connected in the mating network. Additionally, we observe numerous pollination events over distances of hundreds of metres and considerable pollen immigration. Local neighbourhood density is the primary factor influencing within-population mating patterns and pollen dispersal; moreover, mating network properties reflect the population's size and spatial configuration. Conversely, among-population pollen dispersal is mainly determined by tree size, which influences floral display. Our results do not support a major role of directional pollen dispersal in longitudinal trends of genetic diversity. We provide evidence that long-term fragmented tree populations persist in unique environments that shape mating patterns and impose constraints to pollen-mediated gene flow. Nevertheless, even seemingly strongly isolated populations can maintain functional connectivity over extended periods, especially when animal-mediated mating networks promote genetic diversity, as in this riparian tree species.


Assuntos
Genética Populacional , Repetições de Microssatélites , Animais , Teorema de Bayes , Repetições de Microssatélites/genética , Reprodução/genética , Polinização/genética , Fluxo Gênico , Variação Genética/genética
2.
Mol Ecol ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962106

RESUMO

Local survival of forest tree populations under climate change depends on existing genetic variation and their adaptability to changing environments. Responses to selection were studied in European beech (Fagus sylvatica) under field conditions. A total of 1087 adult trees, seeds, 1-year-old seedlings and established multiyear saplings were genotyped with 16 nuSSRs. Adult trees were assessed for phenotypic traits related to growth, phenology and reproduction. Parentage and paternity analyses were used to estimate effective female and male fecundity as a proxy of fitness and showed that few parents contributed to successful regeneration. Selection gradients were estimated from the relationship between traits and fecundity, while heritability and evolvability were estimated using mixed models and the breeder's equation. Larger trees bearing more fruit and early male flowering had higher total fecundity, while trees with longer growth season had lower total fecundity (directional selection). Stabilizing selection on spring phenology was found for female fecundity, highlighting the role of late frosts as a selection driver. Selection gradients for other traits varied between measurement years and the offspring cohort used to estimate parental fecundity. Compared to other studies in natural populations, we found low to moderate heritability and evolvability for most traits. Response to selection was higher for growth than for budburst, leaf senescence or reproduction traits, reflecting more consistent selection gradients across years and sex functions, and higher phenotypic variability in the population. Our study provides empirical evidence suggesting that populations of long-lived organisms such as forest trees can adapt locally, even at short-time scales.

3.
Mol Ecol ; 32(2): 393-411, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301304

RESUMO

Microgeographical adaptation occurs when the effects of directional selection persist despite gene flow. Traits and genetic loci under selection can then show adaptive divergence, against the backdrop of little differentiation at other traits or loci. How common such events are and how strong the selection is that underlies them remain open questions. Here, we discovered and analysed microgeographical patterns of genomic divergence in four European and Mediterranean conifers with widely differing life-history traits and ecological requirements (Abies alba MIll., Cedrus atlantica [Endl.] Manetti, Pinus halepensis Mill. and Pinus pinaster Aiton) by screening pairs from geographically close forest stands sampled along steep ecological gradients. We inferred patterns of genomic divergence by applying a combination of divergence outlier detection methods, demographic modelling, Approximate Bayesian Computation inferences and genomic annotation to genomic data. Surprisingly for such small geographical scales, we showed that selection is strong in all species but generally affects different loci in each. A clear signature of selection was systematically detected on a fraction of the genome, of the order of 0.1%-1% of the loci depending on the species. The novel modelling method we designed for estimating selection coefficients showed that the microgeographical selection coefficient scaled by population size (Ns) was 2-30. Our results convincingly suggest that selection maintains within-population diversity at microgeographical scales in spatially heterogeneous environments. Such genetic diversity is likely to be a major reservoir of adaptive potential, helping populations to adapt under fluctuating environmental conditions.


Assuntos
Variação Genética , Seleção Genética , Variação Genética/genética , Teorema de Bayes , Adaptação Fisiológica/genética , Aclimatação
4.
J Evol Biol ; 35(3): 451-466, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35170114

RESUMO

When environmental conditions differ both within and among populations, multiscale adaptation results from processes at both scales and interference across scales. We hypothesize that within-population environmental heterogeneity influences the chance of success of migration events, both within and among populations, and maintains within-population adaptive differentiation. We used a simulation approach to analyse the joint effects of environmental heterogeneity patterns, selection intensity and number of QTL controlling a selected trait on local adaptation in a hierarchical metapopulation design. We show the general effects of within-population environmental heterogeneity: (i) it increases occupancy rate at the margins of distribution ranges, under extreme environments and high levels of selection; (ii) it increases the adaptation lag in all environments; (iii) it impacts the genetic variance in each environment, depending on the ratio of within- to between-populations environmental heterogeneity; (iv) it reduces the selection-induced erosion of adaptive gene diversity. Most often, the smaller the number of QTL involved, the stronger are these effects. We also show that both within- and between-populations phenotypic differentiation (Q ST ) mainly results from covariance of QTL effects rather than QTL differentiation (F STq ), that within-population QTL differentiation is negligible, and that stronger divergent selection is required to produce adaptive differentiation within populations than among populations. With a high number of QTL, when the difference between environments within populations exceeds the smallest difference between environments across populations, high levels of within-population differentiation can be reached, reducing differentiation among populations. Our study stresses the need to account for within-population environmental heterogeneity when investigating local adaptation.


Assuntos
Locos de Características Quantitativas , Seleção Genética , Aclimatação , Adaptação Fisiológica/genética , Fenótipo
5.
Mol Ecol ; 30(7): 1721-1735, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33559274

RESUMO

Sexual dimorphism in plants may emerge as a result of sex-specific selection on traits enhancing access to nutritive resources and/or to sexual partners. Here we investigated sex-specific differences in selection of sexually dimorphic traits and in the spatial distribution of effective fecundity (our fitness proxy) in a highly dimorphic dioecious wind-pollinated shrub, Leucadendron rubrum. In particular, we tested for the effect of density on male and female effective fecundity. We used spatial and genotypic data of parent and offspring cohorts to jointly estimate individual male and female effective fecundity on the one hand and pollen and seed dispersal kernels on the other hand. This methodology was adapted to the case of dioecious species. Explicitly modelling dispersal avoids the confounding effects of heterogeneous spatial distribution of mates and sampled seedlings on the estimation of effective fecundity. We also estimated selection gradients on plant traits while modelling sex-specific spatial autocorrelation in fecundity. Males exhibited spatial autocorrelation in effective fecundity at a smaller scale than females. A higher local density of plants was associated with lower effective fecundity in males but was not related to female effective fecundity. These results suggest sex-specific sensitivities to environmental heterogeneity in L. rubrum. Despite these sexual differences, we found directional selection for wider canopies and smaller leaves in both sexes, and no sexually antagonistic selection on strongly dimorphic traits in L. rubrum. Many empirical studies in animals similarly failed to detect sexually antagonistic selection in species expressing strong sexual dimorphism, and we discuss reasons explaining this common pattern.


Assuntos
Proteaceae , Caracteres Sexuais , Animais , Feminino , Fertilidade/genética , Masculino , Fenótipo , Vento
6.
Mol Ecol ; 30(20): 5029-5047, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34383353

RESUMO

High genetic variation and extensive gene flow may help forest trees with adapting to ongoing climate change, yet the genetic bases underlying their adaptive potential remain largely unknown. We investigated range-wide patterns of potentially adaptive genetic variation in 64 populations of European beech (Fagus sylvatica L.) using 270 SNPs from 139 candidate genes involved either in phenology or in stress responses. We inferred neutral genetic structure and processes (drift and gene flow) and performed differentiation outlier analyses and gene-environment association (GEA) analyses to detect signatures of divergent selection. Beech range-wide genetic structure was consistent with the species' previously identified postglacial expansion scenario and recolonization routes. Populations showed high diversity and low differentiation along the major expansion routes. A total of 52 loci were found to be putatively under selection and 15 of them turned up in multiple GEA analyses. Temperature and precipitation related variables were equally represented in significant genotype-climate associations. Signatures of divergent selection were detected in the same proportion for stress response and phenology-related genes. The range-wide adaptive genetic structure of beech appears highly integrated, suggesting a balanced contribution of phenology and stress-related genes to local adaptation, and of temperature and precipitation regimes to genetic clines. Our results imply a best-case scenario for the maintenance of high genetic diversity during range shifts in beech (and putatively other forest trees) with a combination of gene flow maintaining within-population neutral diversity and selection maintaining between-population adaptive differentiation.


Assuntos
Fagus , Adaptação Fisiológica , Mudança Climática , Fagus/genética , Variação Genética , Temperatura , Árvores
7.
Heredity (Edinb) ; 126(3): 491-504, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33230286

RESUMO

Understanding the ecological and evolutionary processes occurring during species range shifts is important in the current context of global change. Here, we investigate the interplay between recent expansion, gene flow and genetic drift, and their consequences for genetic diversity and structure at landscape and local scales in European beech (Fagus sylvatica L.) On Mont Ventoux, South-Eastern France, we located beech forest refugia at the time of the most recent population minimum, ~150 years ago, and sampled 71 populations (2042 trees) in both refugia and expanding populations over an area of 15,000 ha. We inferred patterns of gene flow and genetic structure using 12 microsatellite markers. We identified six plots as originating from planting, rather than natural establishment, mostly from local genetic material. Comparing genetic diversity and structure in refugia versus recent populations did not support the existence of founder effects: heterozygosity (He = 0.667) and allelic richness (Ar = 4.298) were similar, and FST was low (0.031 overall). Still, significant spatial evidence of colonization was detected, with He increasing along the expansion front, while genetic differentiation from the entire pool (ßWT) decreased. Isolation by distance was found in refugia but not in recently expanding populations. Our study indicates that beech capacities for colonization and gene flow were sufficient to preserve genetic diversity despite recent forest contraction and expansion. Because beech has long distance pollen and seed dispersal, these results illustrate a 'best case scenario' for the maintenance of high genetic diversity and adaptive potential under climate-change-related range change.


Assuntos
Fagus , Fagus/genética , Efeito Fundador , Variação Genética , Genética Populacional , Repetições de Microssatélites
8.
Ann Bot ; 128(2): 193-204, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33928352

RESUMO

BACKGROUND AND AIMS: Abiotic and biotic stresses related to climate change have been associated with increased crown defoliation, decreased growth and a higher risk of mortality in many forest tree species, but the impact of stresses on tree reproduction and forest regeneration remains understudied. At the dry, warm margin of species distributions, flowering, pollination and seed maturation are expected to be affected by drought, late frost and other stresses, eventually resulting in reproduction failure. Moreover, inter-individual variation in reproductive performance versus other performance traits (growth, survival) could have important consequences for population dynamics. This study investigated the relationships among individual crown defoliation, growth and reproduction in a drought-prone population of European beech, Fagus sylvatica. METHODS: We used a spatially explicit mating model and marker-based parentage analyses to estimate effective female and male fecundities of 432 reproductive trees, which were also monitored for basal area increment and crown defoliation over 9 years. KEY RESULTS: Female and male fecundities varied markedly between individuals, more than did growth. Both female fecundity and growth decreased with increasing crown defoliation and competition, and increased with size. Moreover, the negative effect of defoliation on female fecundity was size-dependent, with a slower decline in female fecundity with increasing defoliation for the large individuals. Finally, a trade-off between growth and female fecundity was observed in response to defoliation: some large trees maintained significant female fecundity at the expense of reduced growth in response to defoliation, while some other defoliated trees maintained high growth at the expense of reduced female fecundity. CONCLUSIONS: Our results suggest that, while decreasing their growth, some large defoliated trees still contribute to reproduction through seed production and pollination. This non-coordinated decline of growth and fecundity at individual level in response to stress may compromise the evolution of stress-resistance traits at population level, and increase forest tree vulnerability.


Assuntos
Fagus , Florestas , Reprodução , Árvores , Madeira
9.
New Phytol ; 227(2): 641-653, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32167572

RESUMO

In species with long-distance dispersal capacities and inhabiting a large ecological niche, local selection and gene flow are expected to be major evolutionary forces affecting the genetic adaptation of natural populations. Yet, in species such as trees, evidence of microgeographic adaptation and the quantitative assessment of the impact of gene flow on adaptive genetic variation are still limited. Here, we used extensive genetic and phenotypic data from European beech seedlings collected along an elevation gradient, and grown in a common garden, to study the signature of selection on the divergence of eleven potentially adaptive traits, and to assess the role of gene flow in resupplying adaptive genetic variation. We found a significant signal of adaptive differentiation among plots separated by < 1 km, with selection acting on growth and phenological traits. Consistent with theoretical expectations, our results suggest that pollen dispersal contributes to increase genetic diversity for these locally differentiated traits. Our results thus highlight that local selection is an important evolutionary force in natural tree populations and suggest that management interventions to facilitate movement of gametes along short ecological gradients would boost genetic diversity of individual tree populations, and enhance their adaptive potential to rapidly changing environments.


Assuntos
Fagus , Árvores , Aclimatação , Adaptação Fisiológica/genética , Variação Genética , Pólen/genética , Árvores/genética
10.
Mol Ecol ; 27(15): 3131-3145, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29924889

RESUMO

Interindividual variation in fecundities has major consequences on population evolutionary potential, through genetic drift and selection. Using two spatially explicit mating models that analyse the genotypes of seeds and seedlings, we investigated the variation of male and female fecundities within and among three European beech (Fagus sylvatica) stands situated along an altitudinal gradient. Female and male individual fecundity distributions were both skewed in this monoecious species, and we found a higher variance in female as compared to male fecundities. Both female and male fecundities increased with tree size and decreased with density and competition in the neighbourhood, the details of these effects suggesting sex-specific strategies to deal with the impact of limited resource on fecundity. The studied populations were functionally male-biased. Among-individual variations in functional gender were not driven by tree size but by density and competition in the neighbourhood. Femaleness decreased under limited resource availability, an expected consequence of the higher cost of female reproduction. Considering the variation of gene flow and genetic drift across elevation, our results suggest that the adaptive potential could be enhanced by low genetic drift at low elevation, and by high pollen-mediated gene flow at high elevation. Finally, this study predicts a more efficient response to selection for traits related to male vs. female fitness, for a given selection intensity.


Assuntos
Fagus/fisiologia , Fluxo Gênico/genética , Árvores/fisiologia , Ecologia , Fagus/genética , Genótipo , Repetições de Microssatélites/genética , Plântula/genética , Plântula/fisiologia , Sementes/genética , Sementes/fisiologia , Árvores/genética
11.
New Phytol ; 210(2): 589-601, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26777878

RESUMO

The evolutionary potential of long-lived species, such as forest trees, is fundamental for their local persistence under climate change (CC). Genome-environment association (GEA) analyses reveal if species in heterogeneous environments at the regional scale are under differential selection resulting in populations with potential preadaptation to CC within this area. In 79 natural Fagus sylvatica populations, neutral genetic patterns were characterized using 12 simple sequence repeat (SSR) markers, and genomic variation (144 single nucleotide polymorphisms (SNPs) out of 52 candidate genes) was related to 87 environmental predictors in the latent factor mixed model, logistic regressions and isolation by distance/environmental (IBD/IBE) tests. SSR diversity revealed relatedness at up to 150 m intertree distance but an absence of large-scale spatial genetic structure and IBE. In the GEA analyses, 16 SNPs in 10 genes responded to one or several environmental predictors and IBE, corrected for IBD, was confirmed. The GEA often reflected the proposed gene functions, including indications for adaptation to water availability and temperature. Genomic divergence and the lack of large-scale neutral genetic patterns suggest that gene flow allows the spread of advantageous alleles in adaptive genes. Thereby, adaptation processes are likely to take place in species occurring in heterogeneous environments, which might reduce their regional extinction risk under CC.


Assuntos
Adaptação Fisiológica/genética , Clima , Fagus/genética , Fagus/fisiologia , Interação Gene-Ambiente , Genoma de Planta , Frequência do Gene/genética , Genes de Plantas , Geografia , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética , Suíça
12.
Mol Ecol ; 25(3): 776-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26676992

RESUMO

Understanding local adaptation in forest trees is currently a key research and societal priority. Geographically and ecologically marginal populations provide ideal case studies, because environmental stress along with reduced gene flow can facilitate the establishment of locally adapted populations. We sampled European silver fir (Abies alba Mill.) trees in the French Mediterranean Alps, along the margin of its distribution range, from pairs of high- and low-elevation plots on four different mountains situated along a 170-km east-west transect. The analysis of 267 SNP loci from 175 candidate genes suggested a neutral pattern of east-west isolation by distance among mountain sites. F(ST) outlier tests revealed 16 SNPs that showed patterns of divergent selection. Plot climate was characterized using both in situ measurements and gridded data that revealed marked differences between and within mountains with different trends depending on the season. Association between allelic frequencies and bioclimatic variables revealed eight genes that contained candidate SNPs, of which two were also detected using F(ST) outlier methods. All SNPs were associated with winter drought, and one of them showed strong evidence of selection with respect to elevation. Q(ST)-F(ST) tests for fitness-related traits measured in a common garden suggested adaptive divergence for the date of bud flush and for growth rate. Overall, our results suggest a complex adaptive picture for A. alba in the southern French Alps where, during the east-to-west Holocene recolonization, locally advantageous genetic variants established at both the landscape and local scales.


Assuntos
Abies/genética , Temperatura Baixa , Secas , Genética Populacional , Seleção Genética , Abies/fisiologia , Adaptação Fisiológica/genética , Teorema de Bayes , Clima , DNA de Plantas/genética , França , Frequência do Gene , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Árvores/genética
13.
Mol Ecol ; 23(19): 4696-708, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25156570

RESUMO

Detecting signatures of selection in tree populations threatened by climate change is currently a major research priority. Here, we investigated the signature of local adaptation over a short spatial scale using 96 European beech (Fagus sylvatica L.) individuals originating from two pairs of populations on the northern and southern slopes of Mont Ventoux (south-eastern France). We performed both single and multilocus analysis of selection based on 53 climate-related candidate genes containing 546 SNPs. FST outlier methods at the SNP level revealed a weak signal of selection, with three marginally significant outliers in the northern populations. At the gene level, considering haplotypes as alleles, two additional marginally significant outliers were detected, one on each slope. To account for the uncertainty of haplotype inference, we averaged the Bayes factors over many possible phase reconstructions. Epistatic selection offers a realistic multilocus model of selection in natural populations. Here, we used a test suggested by Ohta based on the decomposition of the variance of linkage disequilibrium. Overall populations, 0.23% of the SNP pairs (haplotypes) showed evidence of epistatic selection, with nearly 80% of them being within genes. One of the between gene epistatic selection signals arose between an FST outlier and a nonsynonymous mutation in a drought response gene. Additionally, we identified haplotypes containing selectively advantageous allele combinations which were unique to high or low elevations and northern or southern populations. Several haplotypes contained nonsynonymous mutations situated in genes with known functional importance for adaptation to climatic factors.


Assuntos
Mudança Climática , Epistasia Genética , Fagus/genética , Genética Populacional , Aclimatação/genética , Alelos , Teorema de Bayes , DNA de Plantas/genética , França , Haplótipos , Repetições de Microssatélites , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Seleção Genética , Análise de Sequência de DNA
14.
Mol Ecol ; 22(19): 5001-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23952125

RESUMO

Studies addressing the variation of mating system between plant populations rarely account for the variability of these parameters between individuals within populations, although this variability is often non-negligible. Here, we propose a new direct method based on paternity analyses (Mixed Effect Mating Model) to estimate individual migration (mi ) and selfing rates (si ) together with the pollen dispersal kernel. Using this method and the KINDIST approach, we investigated the variation of mating system parameters within and between three populations of Fagus sylvatica along an elevational gradient. Among the mother trees, si varied from 0% to 48%, mi varied from 12% to 86% and the effective number of pollen donors (Nepi ) varied from 2 to 364. The mating patterns differed along the gradient, the top population showing higher m and lower s, and a trend to higher Nep than the bottom populations. The phenological lag shaped long-distance pollen flow both within population (by increasing mi at mother-tree level) and between populations (by increasing m at high elevation). Rather than the mate density, the canopy density was detected as a major mating system determinant within population; it acted as a barrier to pollen flow, decreasing the proportion of long-distance pollen flow and increasing si . Overall, the effects of ecological factors on mating system were not the same within vs. between populations across the gradient, and these factors also differed from those traditionally found to shape variation at range-wide scale, highlighting the interest of multiscale approaches.


Assuntos
Altitude , Fagus/genética , Genética Populacional , França , Genótipo , Repetições de Microssatélites , Modelos Genéticos , Polinização/genética , Densidade Demográfica , Árvores/genética
15.
Evol Appl ; 16(11): 1830-1844, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38029065

RESUMO

Biological production systems and conservation programs benefit from and should care for evolutionary processes. Developing evolution-oriented strategies requires knowledge of the evolutionary consequences of management across timescales. Here, we used an individual-based demo-genetic modelling approach to study the interactions and feedback between tree thinning, genetic evolution, and forest stand dynamics. The model combines processes that jointly drive survival and mating success-tree growth, competition and regeneration-with genetic variation of quantitative traits related to these processes. In various management and disturbance scenarios, the evolutionary rates predicted by the coupled demo-genetic model for a growth-related trait, vigor, fit within the range of empirical estimates found in the literature for wild plant and animal populations. We used this model to simulate non-selective silviculture and disturbance scenarios over four generations of trees. We characterized and quantified the effect of thinning frequencies and intensities and length of the management cycle on viability selection driven by competition and fecundity selection. The thinning regimes had a drastic long-term effect on the evolutionary rate of vigor over generations, potentially reaching 84% reduction, depending on management intensity, cycle length and disturbance regime. The reduction of genetic variance by viability selection within each generation was driven by changes in genotypic frequencies rather than by gene diversity, resulting in low-long-term erosion of the variance across generations, despite short-term fluctuations within generations. The comparison among silviculture and disturbance scenarios was qualitatively robust to assumptions on the genetic architecture of the trait. Thus, the evolutionary consequences of management result from the interference between human interventions and natural evolutionary processes. Non-selective thinning, as considered here, reduces the intensity of natural selection, while selective thinning (on tree size or other criteria) might reduce or reinforce it depending on the forester's tree choice and thinning intensity.

16.
Evol Appl ; 15(12): 1988-2001, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540635

RESUMO

The study of eco-evolutionary dynamics, that is of the intertwinning between ecological and evolutionary processes when they occur at comparable time scales, is of growing interest in the current context of global change. However, many eco-evolutionary studies overlook the role of interindividual interactions, which are hard to predict and yet central to selective values. Here, we aimed at putting forward models that simulate interindividual interactions in an eco-evolutionary framework: the demo-genetic agent-based models (DG-ABMs). Being demo-genetic, DG-ABMs consider the feedback loop between ecological and evolutionary processes. Being agent-based, DG-ABMs follow populations of interacting individuals with sets of traits that vary among the individuals. We argue that the ability of DG-ABMs to take into account the genetic heterogeneity-that affects individual decisions/traits related to local and instantaneous conditions-differentiates them from analytical models, another type of model largely used by evolutionary biologists to investigate eco-evolutionary feedback loops. Based on the review of studies employing DG-ABMs and explicitly or implicitly accounting for competitive, cooperative or reproductive interactions, we illustrate that DG-ABMs are particularly relevant for the exploration of fundamental, yet pressing, questions in evolutionary ecology across various levels of organization. By jointly modelling the effects of management practices and other eco-evolutionary processes on interindividual interactions and population dynamics, DG-ABMs are also effective prospective and decision support tools to evaluate the short- and long-term evolutionary costs and benefits of management strategies and to assess potential trade-offs. Finally, we provide a list of the recent practical advances of the ABM community that should facilitate the development of DG-ABMs.

17.
Mol Ecol ; 20(9): 1997-2010, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21426434

RESUMO

Trees' long lifespan, long-distance dispersal abilities and high year-to-year variability in fecundity are thought to have pervasive consequences for the demographic and genetic structure of recruited seedlings. However, we still lack experimental studies quantifying the respective roles of spatial processes such as restricted seed and pollen dispersal and temporal processes such as mast seeding on patterns of regeneration. Dynamics of European beech (Fagus sylvatica) seedling recruitment was monitored in three plots from 2004 to 2006. Six polymorphic microsatellite genetic markers were used to characterize seedlings and their potential parents in a 7.2-ha stand. These seedlings were shown to result from 12 years of recruitment, with one predominant year of seedling recruitment in 2002 and several years without significant recruitment. Using a spatially explicit mating model based on parentage assignment, short average dispersal distances for seed (δ(s) = 10.9 m) and pollen (43.7 m < δ(p) <57.3 m) were found, but there was also a non-negligible immigration rate from outside the plot (m(s) = 20.5%; 71.6% < m(p) < 77.9%). Hierarchical analyses of seedling genetic structure showed that (i) most of the genetic variation was within plots; (ii) the genetic differentiation among seedling plots was significant (F(ST) = 2.6%) while (iii) there was no effect of year-to-year seed rain variation on genetic structure. In addition, no significant effect of genetic structure on mortality was detected. The consequences of these results for the prediction of population dynamics at ecological timescales are discussed.


Assuntos
Fagus/genética , Fagus/fisiologia , Dispersão de Sementes , Fluxo Gênico , Estruturas Genéticas , Repetições de Microssatélites/genética , Pólen/genética , Dinâmica Populacional , Plântula/genética , Sementes/genética , Sementes/fisiologia , Árvores/genética
18.
Mol Ecol ; 20(24): 5182-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22097929

RESUMO

Range expansion and contraction has occurred in the history of most species and can seriously impact patterns of genetic diversity. Historical data about range change are rare and generally appropriate for studies at large scales, whereas the individual pollen and seed dispersal events that form the basis of geneflow and colonization generally occur at a local scale. In this study, we investigated range change in Fagus sylvatica on Mont Ventoux, France, using historical data from 1838 to the present and approximate Bayesian computation (ABC) analyses of genetic data. From the historical data, we identified a population minimum in 1845 and located remnant populations at least 200 years old. The ABC analysis selected a demographic scenario with three populations, corresponding to two remnant populations and one area of recent expansion. It also identified expansion from a smaller ancestral population but did not find that this expansion followed a population bottleneck, as suggested by the historical data. Despite a strong support to the selected scenario for our data set, the ABC approach showed a low power to discriminate among scenarios on average and a low ability to accurately estimate effective population sizes and divergence dates, probably due to the temporal scale of the study. This study provides an unusual opportunity to test ABC analysis in a system with a well-documented demographic history and identify discrepancies between the results of historical, classical population genetic and ABC analyses. The results also provide valuable insights into genetic processes at work at a fine spatial and temporal scale in range change and colonization.


Assuntos
Bases de Dados Genéticas , Fagus/genética , Genética Populacional , Teorema de Bayes , Biologia Computacional , DNA/genética , DNA/isolamento & purificação , França , Marcadores Genéticos , Variação Genética , Genótipo , Modelos Logísticos , Repetições de Microssatélites , Modelos Biológicos , Filogeografia , Densidade Demográfica , Análise de Sequência de DNA
19.
Trends Ecol Evol ; 35(3): 191-205, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882280

RESUMO

Plant trait variability, emerging from eco-evolutionary dynamics that range from alleles to macroecological scales, is one of the most elusive, but possibly most consequential, aspects of biodiversity. Plasticity, epigenetics, and genetic diversity are major determinants of how plants will respond to climate change, yet these processes are rarely represented in current vegetation models. Here, we provide an overview of the challenges associated with understanding the causes and consequences of plant trait variability, and review current developments to include plasticity and evolutionary mechanisms in vegetation models. We also present a roadmap of research priorities to develop a next generation of vegetation models with flexible traits. Including trait variability in vegetation models is necessary to better represent biosphere responses to global change.


Assuntos
Biodiversidade , Plantas , Evolução Biológica , Mudança Climática , Fenótipo , Plantas/genética
20.
Genes (Basel) ; 10(9)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487909

RESUMO

Finding outlier loci underlying local adaptation is challenging and is best approached by suitable sampling design and rigorous method selection. In this study, we aimed to detect outlier loci (single nucleotide polymorphisms, SNPs) at the local scale by using Aleppo pine (Pinus halepensis), a drought resistant conifer that has colonized many habitats in the Mediterranean Basin, as the model species. We used a nested sampling approach that considered replicated altitudinal gradients for three contrasting sites. We genotyped samples at 294 SNPs located in genomic regions selected to maximize outlier detection. We then applied three different statistical methodologies-Two Bayesian outlier methods and one latent factor principal component method-To identify outlier loci. No SNP was an outlier for all three methods, while eight SNPs were detected by at least two methods and 17 were detected only by one method. From the intersection of outlier SNPs, only one presented an allelic frequency pattern associated with the elevational gradient across the three sites. In a context of multiple populations under similar selective pressures, our results underline the need for careful examination of outliers detected in genomic scans before considering them as candidates for convergent adaptation.


Assuntos
Aclimatação , Evolução Molecular , Pinus/genética , Polimorfismo de Nucleotídeo Único , Altitude , Pinus/fisiologia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA