Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513938

RESUMO

Quaternary ammonium palmitoyl glycol chitosan (GCPQ) has already shown beneficial drug delivery properties and has been studied as a carrier for anticancer agents. Consequently, we synthesised cytotoxic platinum(IV) conjugates of cisplatin, carboplatin and oxaliplatin by coupling via amide bonds to five GCPQ polymers differing in their degree of palmitoylation and quaternisation. The conjugates were characterised by 1H and 195Pt NMR spectroscopy as well as inductively coupled plasma mass spectrometry (ICP-MS), the latter to determine the amount of platinum(IV) units per GCPQ polymer. Cytotoxicity was evaluated by the MTT assay in three human cancer cell lines (A549, non-small-cell lung carcinoma; CH1/PA-1, ovarian teratocarcinoma; SW480, colon adenocarcinoma). All conjugates displayed a high increase in their cytotoxic activity by factors of up to 286 times compared to their corresponding platinum(IV) complexes and mostly outperformed the respective platinum(II) counterparts by factors of up to 20 times, also taking into account the respective loading of platinum(IV) units per GCPQ polymer. Finally, a biodistribution experiment was performed with an oxaliplatin-based GCPQ conjugate in non-tumour-bearing BALB/c mice revealing an increased accumulation in lung tissue. These findings open promising opportunities for further tumouricidal activity studies especially focusing on lung tissue.

2.
Small Methods ; 7(9): e2201695, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317010

RESUMO

Poor understanding of intracellular delivery and targeting hinders development of nucleic acid-based therapeutics transported by nanoparticles. Utilizing a siRNA-targeting and small molecule profiling approach with advanced imaging and machine learning biological insights is generated into the mechanism of lipid nanoparticle (MC3-LNP) delivery of mRNA. This workflow is termed Advanced Cellular and Endocytic profiling for Intracellular Delivery (ACE-ID). A cell-based imaging assay and perturbation of 178 targets relevant to intracellular trafficking is used to identify corresponding effects on functional mRNA delivery. Targets improving delivery are analyzed by extracting data-rich phenotypic fingerprints from images using advanced image analysis algorithms. Machine learning is used to determine key features correlating with enhanced delivery, identifying fluid-phase endocytosis as a productive cellular entry route. With this new knowledge, MC3-LNP is re-engineered to target macropinocytosis, and this significantly improves mRNA delivery in vitro and in vivo. The ACE-ID approach can be broadly applicable for optimizing nanomedicine-based intracellular delivery systems and has the potential to accelerate the development of delivery systems for nucleic acid-based therapeutics.


Assuntos
Endocitose , Nanopartículas , RNA Mensageiro/genética , Endocitose/genética , Biologia
3.
Pharmaceutics ; 15(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37111536

RESUMO

A new class of anticancer prodrugs was designed by combining the cytotoxicity of platinum(IV) complexes and the drug carrier properties of glycol chitosan polymers: Unsymmetrically carboxylated platinum(IV) analogues of cisplatin, carboplatin and oxaliplatin, namely (OC-6-44)-acetatodiammine(3-carboxypropanoato)dichloridoplatinum(IV), (OC-6-44)-acetaodiammine(3-carboxypropanoato)(cyclobutane-1,1-dicarboxylato)platinum(IV) and (OC-6-44)-acetato(3-carboxypropanoato)(1R,2R-cyclohexane-1,2-diamine)oxalatoplatinum(IV) were synthesised and conjugated via amide bonding to degraded glycol chitosan (dGC) polymers with different chain lengths (5, 10, 18 kDa). The 15 conjugates were investigated with 1H and 195Pt NMR spectroscopy, and average amounts of platinum(IV) units per dGC polymer molecule with ICP-MS, revealing a range of 1.3-22.8 platinum(IV) units per dGC molecule. Cytotoxicity was tested with MTT assays in the cancer cell lines A549, CH1/PA-1, SW480 (human) and 4T1 (murine). IC50 values in the low micromolar to nanomolar range were obtained, and higher antiproliferative activity (up to 72 times) was detected with dGC-platinum(IV) conjugates in comparison to platinum(IV) counterparts. The highest cytotoxicity (IC50 of 0.036 ± 0.005 µM) was determined in CH1/PA-1 ovarian teratocarcinoma cells with a cisplatin(IV)-dGC conjugate, which is hence 33 times more potent than the corresponding platinum(IV) complex and twice more potent than cisplatin. Biodistribution studies of an oxaliplatin(IV)-dGC conjugate in non-tumour-bearing Balb/C mice showed an increased accumulation in the lung compared to the unloaded oxaliplatin(IV) analogue, arguing for further activity studies.

4.
Pathogens ; 11(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35056021

RESUMO

PURPOSE: Chronic infections of Candida albicans are characterised by the embedding of budding and entwined filamentous fungal cells into biofilms. The biofilms are refractory to many drugs and Candida biofilms are associated with ocular fungal infections. The objective was to test the activity of nanoparticulate amphotericin B (AmB) against Candida biofilms. METHODS: AmB was encapsulated in the Molecular Envelope Technology (MET, N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan) nanoparticles and tested against Candida biofilms in vitro. Confocal laser scanning microscopy (CLSM) imaging of MET nanoparticles' penetration into experimental biofilms was carried out and a MET-AmB eye drop formulation was tested for its stability. RESULTS: MET-AmB formulations demonstrated superior activity towards C. albicans biofilms in vitro with the EC50 being ~30 times lower than AmB alone (EC50 MET-AmB = 1.176 µg mL-1, EC50 AmB alone = 29.09 µg mL-1). A similar superior activity was found for Candida glabrata biofilms, where the EC50 was ~10× lower than AmB alone (EC50 MET-AmB = 0.0253 µg mL-1, EC50 AmB alone = 0.289 µg mL-1). CLSM imaging revealed that MET nanoparticles penetrated through the C. albicans biofilm matrix and bound to fungal cells. The activity of MET-AmB was no different from the activity of AmB alone against C. albicans cells in suspension (MET-AmB MIC90 = 0.125 µg mL-1, AmB alone MIC90 = 0.250 µg mL-1). MET-AmB eye drops were stable at room temperature for at least 28 days. CONCLUSIONS: These biofilm activity findings raise the possibility that MET-loaded nanoparticles may be used to tackle Candida biofilm infections, such as refractory ocular fungal infections.

5.
Int J Pharm ; 621: 121755, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35447226

RESUMO

Treatment of posterior eye diseases with intravitreal injections of drugs, while effective, is invasive and associated with side effects such as retinal detachment and endophthalmitis. In this work, we have formulated a model compound, rapamycin (RAP), in nanoparticle-based eye drops and evaluated the delivery of RAP to the posterior eye tissues in a healthy rabbit. We have also studied the formulation in experimental autoimmune uveitis (EAU) mouse model with retinal inflammation. Aqueous RAP eye drops were prepared using N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (Molecular Envelope Technology - MET) containing 0.23 ± 0.001% w/v RAP with viscosity, osmolarity, and pH within the ocular comfort range, and the formulation (MET-RAP) was stable in terms of drug content at both refrigeration and room temperature for one month. The MET-RAP eye drops delivered RAP to the choroid-retina with a Cmax of 145 ± 49 ng/g (tmax = 1 h). The topical application of the MET-RAP eye drops to the EAU mouse model resulted in significant disease suppression compared to controls, with activity similar to dexamethasone eye drops. The MET-RAP eye drops also resulted in a reduction of RORγt and an increase in both Foxp3 expression and IL-10 secretion, indicating a mechanism involving the inhibition of Th17 cells and the up-regulation of T-reg cells. The MET-RAP formulation delivers RAP to the posterior eye segments, and the formulation is active in EAU.


Assuntos
Segmento Posterior do Olho , Uveíte , Animais , Camundongos , Soluções Oftálmicas/farmacologia , Coelhos , Retina , Sirolimo/farmacologia , Uveíte/tratamento farmacológico
6.
SLAS Discov ; 25(6): 605-617, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32441189

RESUMO

Modified messenger RNAs (mRNAs) hold great potential as therapeutics by using the body's own processes for protein production. However, a key challenge is efficient delivery of therapeutic mRNA to the cell cytosol and productive protein translation. Lipid nanoparticles (LNPs) are the most clinically advanced system for nucleic acid delivery; however, a relatively narrow therapeutic index makes them unsuitable for many therapeutic applications. A key obstacle to the development of more potent LNPs is a limited mechanistic understanding of the interaction of LNPs with cells. To address this gap, we performed an arrayed CRISPR screen to identify novel pathways important for the functional delivery of MC3 lipid-based LNP encapsulated mRNA (LNP-mRNA). Here, we have developed and validated a robust, high-throughput screening-friendly phenotypic assay to identify novel targets that modulate productive LNP-mRNA delivery. We screened the druggable genome (7795 genes) and validated 44 genes that either increased (37 genes) or inhibited (14 genes) the productive delivery of LNP-mRNA. Many of these genes clustered into families involved with host cell transcription, protein ubiquitination, and intracellular trafficking. We show that both UDP-glucose ceramide glucosyltransferase and V-type proton ATPase can significantly modulate the productive delivery of LNP-mRNA, increasing and decreasing, respectively, with both genetic perturbation and by small-molecule inhibition. Taken together, these findings shed new light into the molecular machinery regulating the delivery of LNPs into cells and improve our mechanistic understanding of the cellular processes modulating the interaction of LNPs with cells.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Terapia Genética/tendências , Nanopartículas/química , RNA Mensageiro/genética , Técnicas de Transferência de Genes/tendências , Genoma Humano/genética , Ensaios de Triagem em Larga Escala/métodos , Humanos , Lipídeos/química , Lipídeos/genética , Lipídeos/uso terapêutico , Nanopartículas/uso terapêutico , RNA Mensageiro/uso terapêutico
7.
Pharm Nanotechnol ; 7(1): 57-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854985

RESUMO

BACKGROUND: GCPQ (N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl- 6-O-glycolchitosan) is a self-assembling polymer being investigated as a pharmaceutical nano-carrier. GCPQ nanoparticles shuttle drugs across biological barriers, improving drug performance. The exact chemistry of GCPQ is varied by the relative proportion of hydrophobic (N-palmitoyl) and hydrophilic (quaternary ammonium) groups and molecular weight. OBJECTIVE: We hypothesised that the thermodynamics of self-assembly is controlled by the polymer molecular weight and hydrophobicity. METHOD: The thermodynamics of self-assembly was investigated using isothermal calorimetry. RESULTS: GCPQs (Mw = 8-15 kDa) formed micellar aggregates at critical micellar concentrations of 1-2.4 µM at 25°C and micellisation was unusually enthalpy driven. There was a positive correlation between ΔHmic and mole% quaternary groups (Q): ΔHmic = 3.8 Q- 159 (r2 = 0.93) and a negative correlation between ΔHmic and molecular weight (Mw): ΔHmic = -13.5 Mw-26.3 (r2 = 0.99). CONCLUSION: These findings provide insights into the positive drivers of stable selfassemblies, namely hydrophobicity and molecular weight, as both hydrophobicity and molecular weight are associated with an increased enthalpy contribution to micellisation.


Assuntos
Quitosana/análogos & derivados , Quitosana/química , Nanopartículas/química , Dimerização , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Micelas , Peso Molecular , Temperatura , Termodinâmica
8.
Int J Pharm ; 514(1): 121-132, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27863655

RESUMO

Here we examine the mechanisms by which nanoparticles enable the oral absorption of water-insoluble, P-glycoprotein efflux pump (P-gp) substrates, without recourse to P-gp inhibitors. Both 200nm paclitaxel N-(2-phenoxyacetyl)-6-O-glycolchitosan (GCPh) nanoparticles (GCPh-PTX) and a simulated Taxol formulation, facilitate drug dissolution in biorelevant media, unlike paclitaxel nanocrystals. Verapamil (40mgkg-1) increased the oral absorption from low dose Taxol (6 or 10mgkg-1) by 100%, whereas the oral absorption from high dose Taxol (20mgkg-1) or low dose GCPh-PTX (6 or 10mgkg-1) was largely unchanged by verapamil. There was virtually no absorption from control paclitaxel nanocrystals (20mgkg-1). Imaging of ex-vivo rat ileum samples showed that fluorescently labelled GCPh nanoparticles are mucoadhesive and are taken up by ileum epithelial cells. GCPh nanoparticles were also found to open Caco-2 cell tight junctions. In conclusion, mucoadhesive, drug solubilising GCPh nanoparticles enable the oral absorption of paclitaxel via the saturation of the P-gp pump (by high local drug concentrations) and by particle uptake and tight junction opening mechanisms.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Água/química , Administração Oral , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Quitosana/química , Quitosana/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Células Epiteliais/metabolismo , Humanos , Íleo/metabolismo , Absorção Intestinal/efeitos dos fármacos , Masculino , Camundongos , Paclitaxel/química , Paclitaxel/metabolismo , Ratos , Ratos Wistar , Solubilidade , Junções Íntimas/metabolismo , Verapamil/química , Verapamil/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA