RESUMO
BACKGROUND: The COVID-19 pandemic has disrupted the lives of millions and forced countries to devise public health policies to reduce the pace of transmission. In the Middle East and North Africa (MENA), falling oil prices, disparities in wealth and public health infrastructure, and large refugee populations have significantly increased the disease burden of COVID-19. In light of these exacerbating factors, public health surveillance is particularly necessary to help leaders understand and implement effective disease control policies to reduce SARS-CoV-2 persistence and transmission. OBJECTIVE: The goal of this study is to provide advanced surveillance metrics, in combination with traditional surveillance, for COVID-19 transmission that account for weekly shifts in the pandemic speed, acceleration, jerk, and persistence to better understand a country's risk for explosive growth and to better inform those who are managing the pandemic. Existing surveillance coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until an effective vaccine is developed. METHODS: Using a longitudinal trend analysis study design, we extracted 30 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in MENA as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel data model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: The regression Wald statistic was significant (χ25=859.5, P<.001). The Sargan test was not significant, failing to reject the validity of overidentifying restrictions (χ2294=16, P=.99). Countries with the highest cumulative caseload of the novel coronavirus include Iran, Iraq, Saudi Arabia, and Israel with 530,380, 426,634, 342,202, and 303,109 cases, respectively. Many of the smaller countries in MENA have higher infection rates than those countries with the highest caseloads. Oman has 33.3 new infections per 100,000 population while Bahrain has 12.1, Libya has 14, and Lebanon has 14.6 per 100,000 people. In order of largest to smallest number of cumulative deaths since January 2020, Iran, Iraq, Egypt, and Saudi Arabia have 30,375, 10,254, 6120, and 5185, respectively. Israel, Bahrain, Lebanon, and Oman had the highest rates of COVID-19 persistence, which is the number of new infections statistically related to new infections in the prior week. Bahrain had positive speed, acceleration, and jerk, signaling the potential for explosive growth. CONCLUSIONS: Static and dynamic public health surveillance metrics provide a more complete picture of pandemic progression across countries in MENA. Static measures capture data at a given point in time such as infection rates and death rates. By including speed, acceleration, jerk, and 7-day persistence, public health officials may design policies with an eye to the future. Iran, Iraq, Saudi Arabia, and Israel all demonstrated the highest rate of infections, acceleration, jerk, and 7-day persistence, prompting public health leaders to increase prevention efforts.
Assuntos
COVID-19/epidemiologia , África do Norte/epidemiologia , Humanos , Estudos Longitudinais , Oriente Médio/epidemiologia , Pandemias , Vigilância em Saúde Pública/métodos , SARS-CoV-2/isolamento & purificaçãoRESUMO
BACKGROUND: The COVID-19 pandemic has had a profound global impact on governments, health care systems, economies, and populations around the world. Within the East Asia and Pacific region, some countries have mitigated the spread of the novel coronavirus effectively and largely avoided severe negative consequences, while others still struggle with containment. As the second wave reaches East Asia and the Pacific, it becomes more evident that additional SARS-CoV-2 surveillance is needed to track recent shifts, rates of increase, and persistence associated with the pandemic. OBJECTIVE: The goal of this study is to provide advanced surveillance metrics for COVID-19 transmission that account for speed, acceleration, jerk, persistence, and weekly shifts, to better understand country risk for explosive growth and those countries who are managing the pandemic successfully. Existing surveillance coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until an effective vaccine is developed. We provide novel indicators to measure disease transmission. METHODS: Using a longitudinal trend analysis study design, we extracted 330 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in East Asia and the Pacific as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: The standard surveillance metrics for Indonesia, the Philippines, and Myanmar were concerning as they had the largest new caseloads at 4301, 2588, and 1387, respectively. When looking at the acceleration of new COVID-19 infections, we found that French Polynesia, Malaysia, and the Philippines had rates at 3.17, 0.22, and 0.06 per 100,000. These three countries also ranked highest in terms of jerk at 15.45, 0.10, and 0.04, respectively. CONCLUSIONS: Two of the most populous countries in East Asia and the Pacific, Indonesia and the Philippines, have alarming surveillance metrics. These two countries rank highest in new infections in the region. The highest rates of speed, acceleration, and positive upwards jerk belong to French Polynesia, Malaysia, and the Philippines, and may result in explosive growth. While all countries in East Asia and the Pacific need to be cautious about reopening their countries since outbreaks are likely to occur in the second wave of COVID-19, the country of greatest concern is the Philippines. Based on standard and enhanced surveillance, the Philippines has not gained control of the COVID-19 epidemic, which is particularly troubling because the country ranks 4th in population in the region. Without extreme and rigid social distancing, quarantines, hygiene, and masking to reverse trends, the Philippines will remain on the global top 5 list of worst COVID-19 outbreaks resulting in high morbidity and mortality. The second wave will only exacerbate existing conditions and increase COVID-19 transmissions.
Assuntos
COVID-19/epidemiologia , Sudeste Asiático/epidemiologia , Australásia/epidemiologia , COVID-19/transmissão , Ásia Oriental/epidemiologia , Política de Saúde , Humanos , Indonésia/epidemiologia , Estudos Longitudinais , Malásia/epidemiologia , Pandemias , Filipinas/epidemiologia , Polinésia/epidemiologia , Saúde Pública , Vigilância em Saúde Pública , Sistema de Registros , SARS-CoV-2RESUMO
BACKGROUND: SARS-CoV-2, the virus that caused the global COVID-19 pandemic, has severely impacted Central Asia; in spring 2020, high numbers of cases and deaths were reported in this region. The second wave of the COVID-19 pandemic is currently breaching the borders of Central Asia. Public health surveillance is necessary to inform policy and guide leaders; however, existing surveillance explains past transmissions while obscuring shifts in the pandemic, increases in infection rates, and the persistence of the transmission of COVID-19. OBJECTIVE: The goal of this study is to provide enhanced surveillance metrics for SARS-CoV-2 transmission that account for weekly shifts in the pandemic, including speed, acceleration, jerk, and persistence, to better understand the risk of explosive growth in each country and which countries are managing the pandemic successfully. METHODS: Using a longitudinal trend analysis study design, we extracted 60 days of COVID-19-related data from public health registries. We used an empirical difference equation to measure the daily number of cases in the Central Asia region as a function of the prior number of cases, level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: COVID-19 transmission rates were tracked for the weeks of September 30 to October 6 and October 7-13, 2020, in Central Asia. The region averaged 11,730 new cases per day for the first week and 14,514 for the second week. Infection rates increased across the region from 4.74 per 100,000 persons to 5.66. Russia and Turkey had the highest 7-day moving averages in the region, with 9836 and 1469, respectively, for the week of October 6 and 12,501 and 1603, respectively, for the week of October 13. Russia has the fourth highest speed in the region and continues to have positive acceleration, driving the negative trend for the entire region as the largest country by population. Armenia is experiencing explosive growth of COVID-19; its infection rate of 13.73 for the week of October 6 quickly jumped to 25.19, the highest in the region, the following week. The region overall is experiencing increases in its 7-day moving average of new cases, infection, rate, and speed, with continued positive acceleration and no sign of a reversal in sight. CONCLUSIONS: The rapidly evolving COVID-19 pandemic requires novel dynamic surveillance metrics in addition to static metrics to effectively analyze the pandemic trajectory and control spread. Policy makers need to know the magnitude of transmission rates, how quickly they are accelerating, and how previous cases are impacting current caseload due to a lag effect. These metrics applied to Central Asia suggest that the region is trending negatively, primarily due to minimal restrictions in Russia.
Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Pessoal Administrativo , Armênia/epidemiologia , Ásia Central/epidemiologia , Azerbaijão/epidemiologia , Benchmarking , Chipre/epidemiologia , Dinamarca/epidemiologia , Insegurança Alimentar , República da Geórgia/epidemiologia , Gibraltar/epidemiologia , Humanos , Kosovo/epidemiologia , Estudos Longitudinais , Pandemias/prevenção & controle , Saúde Pública , Vigilância em Saúde Pública/métodos , Sistema de Registros , República da Macedônia do Norte/epidemiologia , Federação Russa/epidemiologia , SARS-CoV-2 , Turquia/epidemiologia , Insegurança HídricaRESUMO
BACKGROUND: SARS-CoV-2, the novel coronavirus that causes COVID-19, is a global pandemic with higher mortality and morbidity than any other virus in the last 100 years. Without public health surveillance, policy makers cannot know where and how the disease is accelerating, decelerating, and shifting. Unfortunately, existing models of COVID-19 contagion rely on parameters such as the basic reproduction number and use static statistical methods that do not capture all the relevant dynamics needed for surveillance. Existing surveillance methods use data that are subject to significant measurement error and other contaminants. OBJECTIVE: The aim of this study is to provide a proof of concept of the creation of surveillance metrics that correct for measurement error and data contamination to determine when it is safe to ease pandemic restrictions. We applied state-of-the-art statistical modeling to existing internet data to derive the best available estimates of the state-level dynamics of COVID-19 infection in the United States. METHODS: Dynamic panel data (DPD) models were estimated with the Arellano-Bond estimator using the generalized method of moments. This statistical technique enables control of various deficiencies in a data set. The validity of the model and statistical technique was tested. RESULTS: A Wald chi-square test of the explanatory power of the statistical approach indicated that it is valid (χ210=1489.84, P<.001), and a Sargan chi-square test indicated that the model identification is valid (χ2946=935.52, P=.59). The 7-day persistence rate for the week of June 27 to July 3 was 0.5188 (P<.001), meaning that every 10,000 new cases in the prior week were associated with 5188 cases 7 days later. For the week of July 4 to 10, the 7-day persistence rate increased by 0.2691 (P=.003), indicating that every 10,000 new cases in the prior week were associated with 7879 new cases 7 days later. Applied to the reported number of cases, these results indicate an increase of almost 100 additional new cases per day per state for the week of July 4-10. This signifies an increase in the reproduction parameter in the contagion models and corroborates the hypothesis that economic reopening without applying best public health practices is associated with a resurgence of the pandemic. CONCLUSIONS: DPD models successfully correct for measurement error and data contamination and are useful to derive surveillance metrics. The opening of America involves two certainties: the country will be COVID-19-free only when there is an effective vaccine, and the "social" end of the pandemic will occur before the "medical" end. Therefore, improved surveillance metrics are needed to inform leaders of how to open sections of the United States more safely. DPD models can inform this reopening in combination with the extraction of COVID-19 data from existing websites.
Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Política de Saúde , Modelos Biológicos , Modelos Estatísticos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Vigilância em Saúde Pública/métodos , Betacoronavirus , COVID-19 , Infecções por Coronavirus/prevenção & controle , Humanos , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Pneumonia Viral/prevenção & controle , Reprodutibilidade dos Testes , SARS-CoV-2 , Estados Unidos/epidemiologiaRESUMO
BACKGROUND: The Great COVID-19 Shutdown aimed to eliminate or slow the spread of SARS-CoV-2, the virus that causes COVID-19. The United States has no national policy, leaving states to independently implement public health guidelines that are predicated on a sustained decline in COVID-19 cases. Operationalization of "sustained decline" varies by state and county. Existing models of COVID-19 transmission rely on parameters such as case estimates or R0 and are dependent on intensive data collection efforts. Static statistical models do not capture all of the relevant dynamics required to measure sustained declines. Moreover, existing COVID-19 models use data that are subject to significant measurement error and contamination. OBJECTIVE: This study will generate novel metrics of speed, acceleration, jerk, and 7-day lag in the speed of COVID-19 transmission using state government tallies of SARS-CoV-2 infections, including state-level dynamics of SARS-CoV-2 infections. This study provides the prototype for a global surveillance system to inform public health practice, including novel standardized metrics of COVID-19 transmission, for use in combination with traditional surveillance tools. METHODS: Dynamic panel data models were estimated with the Arellano-Bond estimator using the generalized method of moments. This statistical technique allows for the control of a variety of deficiencies in the existing data. Tests of the validity of the model and statistical techniques were applied. RESULTS: The statistical approach was validated based on the regression results, which determined recent changes in the pattern of infection. During the weeks of August 17-23 and August 24-30, 2020, there were substantial regional differences in the evolution of the US pandemic. Census regions 1 and 2 were relatively quiet with a small but significant persistence effect that remained relatively unchanged from the prior 2 weeks. Census region 3 was sensitive to the number of tests administered, with a high constant rate of cases. A weekly special analysis showed that these results were driven by states with a high number of positive test reports from universities. Census region 4 had a high constant number of cases and a significantly increased persistence effect during the week of August 24-30. This change represents an increase in the transmission model R value for that week and is consistent with a re-emergence of the pandemic. CONCLUSIONS: Reopening the United States comes with three certainties: (1) the "social" end of the pandemic and reopening are going to occur before the "medical" end even while the pandemic is growing. We need improved standardized surveillance techniques to inform leaders when it is safe to open sections of the country; (2) varying public health policies and guidelines unnecessarily result in varying degrees of transmission and outbreaks; and (3) even those states most successful in containing the pandemic continue to see a small but constant stream of new cases daily.
Assuntos
Controle de Doenças Transmissíveis/legislação & jurisprudência , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Política de Saúde , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Informática em Saúde Pública/métodos , Betacoronavirus , COVID-19 , Controle de Doenças Transmissíveis/métodos , Humanos , Modelos Estatísticos , Pandemias , Saúde Pública , Padrões de Referência , Análise de Regressão , SARS-CoV-2 , Estados UnidosRESUMO
BACKGROUND: Since the novel coronavirus emerged in late 2019, the scientific and public health community around the world have sought to better understand, surveil, treat, and prevent the disease, COVID-19. In sub-Saharan Africa (SSA), many countries responded aggressively and decisively with lockdown measures and border closures. Such actions may have helped prevent large outbreaks throughout much of the region, though there is substantial variation in caseloads and mortality between nations. Additionally, the health system infrastructure remains a concern throughout much of SSA, and the lockdown measures threaten to increase poverty and food insecurity for the subcontinent's poorest residents. The lack of sufficient testing, asymptomatic infections, and poor reporting practices in many countries limit our understanding of the virus's impact, creating a need for better and more accurate surveillance metrics that account for underreporting and data contamination. OBJECTIVE: The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with new and decomposable surveillance metrics of COVID-19 that overcome data limitations and contamination inherent in public health surveillance systems. In addition to prevalence of observed daily and cumulative testing, testing positivity rates, morbidity, and mortality, we derived COVID-19 transmission in terms of speed, acceleration or deceleration, change in acceleration or deceleration (jerk), and 7-day transmission rate persistence, which explains where and how rapidly COVID-19 is transmitting and quantifies shifts in the rate of acceleration or deceleration to inform policies to mitigate and prevent COVID-19 and food insecurity in SSA. METHODS: We extracted 60 days of COVID-19 data from public health registries and employed an empirical difference equation to measure daily case numbers in 47 sub-Saharan countries as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Kenya, Ghana, Nigeria, Ethiopia, and South Africa have the most observed cases of COVID-19, and the Seychelles, Eritrea, Mauritius, Comoros, and Burundi have the fewest. In contrast, the speed, acceleration, jerk, and 7-day persistence indicate rates of COVID-19 transmissions differ from observed cases. In September 2020, Cape Verde, Namibia, Eswatini, and South Africa had the highest speed of COVID-19 transmissions at 13.1, 7.1, 3.6, and 3 infections per 100,0000, respectively; Zimbabwe had an acceleration rate of transmission, while Zambia had the largest rate of deceleration this week compared to last week, referred to as a jerk. Finally, the 7-day persistence rate indicates the number of cases on September 15, 2020, which are a function of new infections from September 8, 2020, decreased in South Africa from 216.7 to 173.2 and Ethiopia from 136.7 to 106.3 per 100,000. The statistical approach was validated based on the regression results; they determined recent changes in the pattern of infection, and during the weeks of September 1-8 and September 9-15, there were substantial country differences in the evolution of the SSA pandemic. This change represents a decrease in the transmission model R value for that week and is consistent with a de-escalation in the pandemic for the sub-Saharan African continent in general. CONCLUSIONS: Standard surveillance metrics such as daily observed new COVID-19 cases or deaths are necessary but insufficient to mitigate and prevent COVID-19 transmission. Public health leaders also need to know where COVID-19 transmission rates are accelerating or decelerating, whether those rates increase or decrease over short time frames because the pandemic can quickly escalate, and how many cases today are a function of new infections 7 days ago. Even though SSA is home to some of the poorest countries in the world, development and population size are not necessarily predictive of COVID-19 transmission, meaning higher income countries like the United States can learn from African countries on how best to implement mitigation and prevention efforts. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/21955.
Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Política de Saúde , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Vigilância em Saúde Pública , África Subsaariana/epidemiologia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/virologia , Feminino , Humanos , Masculino , Modelos Biológicos , Pandemias , Pneumonia Viral/virologia , Sistema de Registros , SARS-CoV-2RESUMO
BACKGROUND: The emergence of SARS-CoV-2, the virus that causes COVID-19, has led to a global pandemic. The United States has been severely affected, accounting for the most COVID-19 cases and deaths worldwide. Without a coordinated national public health plan informed by surveillance with actionable metrics, the United States has been ineffective at preventing and mitigating the escalating COVID-19 pandemic. Existing surveillance has incomplete ascertainment and is limited by the use of standard surveillance metrics. Although many COVID-19 data sources track infection rates, informing prevention requires capturing the relevant dynamics of the pandemic. OBJECTIVE: The aim of this study is to develop dynamic metrics for public health surveillance that can inform worldwide COVID-19 prevention efforts. Advanced surveillance techniques are essential to inform public health decision making and to identify where and when corrective action is required to prevent outbreaks. METHODS: Using a longitudinal trend analysis study design, we extracted COVID-19 data from global public health registries. We used an empirical difference equation to measure daily case numbers for our use case in 50 US states and the District of Colombia as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Examination of the United States and state data demonstrated that most US states are experiencing outbreaks as measured by these new metrics of speed, acceleration, jerk, and persistence. Larger US states have high COVID-19 caseloads as a function of population size, density, and deficits in adherence to public health guidelines early in the epidemic, and other states have alarming rates of speed, acceleration, jerk, and 7-day persistence in novel infections. North and South Dakota have had the highest rates of COVID-19 transmission combined with positive acceleration, jerk, and 7-day persistence. Wisconsin and Illinois also have alarming indicators and already lead the nation in daily new COVID-19 infections. As the United States enters its third wave of COVID-19, all 50 states and the District of Colombia have positive rates of speed between 7.58 (Hawaii) and 175.01 (North Dakota), and persistence, ranging from 4.44 (Vermont) to 195.35 (North Dakota) new infections per 100,000 people. CONCLUSIONS: Standard surveillance techniques such as daily and cumulative infections and deaths are helpful but only provide a static view of what has already occurred in the pandemic and are less helpful in prevention. Public health policy that is informed by dynamic surveillance can shift the country from reacting to COVID-19 transmissions to being proactive and taking corrective action when indicators of speed, acceleration, jerk, and persistence remain positive week over week. Implicit within our dynamic surveillance is an early warning system that indicates when there is problematic growth in COVID-19 transmissions as well as signals when growth will become explosive without action. A public health approach that focuses on prevention can prevent major outbreaks in addition to endorsing effective public health policies. Moreover, subnational analyses on the dynamics of the pandemic allow us to zero in on where transmissions are increasing, meaning corrective action can be applied with precision in problematic areas. Dynamic public health surveillance can inform specific geographies where quarantines are necessary while preserving the economy in other US areas.
Assuntos
COVID-19/prevenção & controle , COVID-19/transmissão , Vigilância em Saúde Pública , COVID-19/epidemiologia , COVID-19/mortalidade , Humanos , Estudos Longitudinais , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Saúde Pública , Sistema de Registros , SARS-CoV-2 , Estados Unidos/epidemiologiaRESUMO
BACKGROUND: Public mass shootings are a significant public health problem that require ongoing systematic surveillance to test and inform policies that combat gun injuries. Although there is widespread agreement that something needs to be done to stop public mass shootings, opinions on exactly which policies that entails vary, such as the prohibition of assault weapons and large-capacity magazines. OBJECTIVE: The aim of this study was to determine if the Federal Assault Weapons Ban (FAWB) (1994-2004) reduced the number of public mass shootings while it was in place. METHODS: We extracted public mass shooting surveillance data from the Violence Project that matched our inclusion criteria of 4 or more fatalities in a public space during a single event. We performed regression discontinuity analysis, taking advantage of the imposition of the FAWB, which included a prohibition on large-capacity magazines in addition to assault weapons. We estimated a regression model of the 5-year moving average number of public mass shootings per year for the period of 1966 to 2019 controlling for population growth and homicides in general, introduced regression discontinuities in the intercept and a time trend for years coincident with the federal legislation (ie, 1994-2004), and also allowed for a differential effect of the homicide rate during this period. We introduced a second set of trend and intercept discontinuities for post-FAWB years to capture the effects of termination of the policy. We used the regression results to predict what would have happened from 1995 to 2019 had there been no FAWB and also to project what would have happened from 2005 onward had it remained in place. RESULTS: The FAWB resulted in a significant decrease in public mass shootings, number of gun deaths, and number of gun injuries. We estimate that the FAWB prevented 11 public mass shootings during the decade the ban was in place. A continuation of the FAWB would have prevented 30 public mass shootings that killed 339 people and injured an additional 1139 people. CONCLUSIONS: This study demonstrates the utility of public health surveillance on gun violence. Surveillance informs policy on whether a ban on assault weapons and large-capacity magazines reduces public mass shootings. As society searches for effective policies to prevent the next mass shooting, we must consider the overwhelming evidence that bans on assault weapons and/or large-capacity magazines work.
Assuntos
Armas de Fogo/legislação & jurisprudência , Incidentes com Feridos em Massa/prevenção & controle , Políticas , Vigilância em Saúde Pública , Ferimentos por Arma de Fogo/prevenção & controle , Humanos , Incidentes com Feridos em Massa/estatística & dados numéricos , Análise de Regressão , Estados Unidos/epidemiologia , Ferimentos por Arma de Fogo/epidemiologiaRESUMO
BACKGROUND: The COVID-19 pandemic has severely impacted Europe, resulting in a high caseload and deaths that varied by country. The second wave of the COVID-19 pandemic has breached the borders of Europe. Public health surveillance is necessary to inform policy and guide leaders. OBJECTIVE: This study aimed to provide advanced surveillance metrics for COVID-19 transmission that account for weekly shifts in the pandemic, speed, acceleration, jerk, and persistence, to better understand countries at risk for explosive growth and those that are managing the pandemic effectively. METHODS: We performed a longitudinal trend analysis and extracted 62 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in Europe as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: New COVID-19 cases slightly decreased from 158,741 (week 1, January 4-10, 2021) to 152,064 (week 2, January 11-17, 2021), and cumulative cases increased from 22,507,271 (week 1) to 23,890,761 (week 2), with a weekly increase of 1,383,490 between January 10 and January 17. France, Germany, Italy, Spain, and the United Kingdom had the largest 7-day moving averages for new cases during week 1. During week 2, the 7-day moving average for France and Spain increased. From week 1 to week 2, the speed decreased (37.72 to 33.02 per 100,000), acceleration decreased (0.39 to -0.16 per 100,000), and jerk increased (-1.30 to 1.37 per 100,000). CONCLUSIONS: The United Kingdom, Spain, and Portugal, in particular, are at risk for a rapid expansion in COVID-19 transmission. An examination of the European region suggests that there was a decrease in the COVID-19 caseload between January 4 and January 17, 2021. Unfortunately, the rates of jerk, which were negative for Europe at the beginning of the month, reversed course and became positive, despite decreases in speed and acceleration. Finally, the 7-day persistence rate was higher during week 2 than during week 1. These measures indicate that the second wave of the pandemic may be subsiding, but some countries remain at risk for new outbreaks and increased transmission in the absence of rapid policy responses.
Assuntos
COVID-19/epidemiologia , Vigilância em Saúde Pública , Europa (Continente)/epidemiologia , Humanos , Estudos LongitudinaisRESUMO
BACKGROUND: The COVID-19 pandemic has placed unprecedented stress on economies, food systems, and health care resources in Latin America and the Caribbean (LAC). Existing surveillance provides a proxy of the COVID-19 caseload and mortalities; however, these measures make it difficult to identify the dynamics of the pandemic and places where outbreaks are likely to occur. Moreover, existing surveillance techniques have failed to measure the dynamics of the pandemic. OBJECTIVE: This study aimed to provide additional surveillance metrics for COVID-19 transmission to track changes in the speed, acceleration, jerk, and persistence in the transmission of the pandemic more accurately than existing metrics. METHODS: Through a longitudinal trend analysis, we extracted COVID-19 data over 45 days from public health registries. We used an empirical difference equation to monitor the daily number of cases in the LAC as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. COVID-19 transmission rates were tracked for the LAC between September 30 and October 6, 2020, and between October 7 and 13, 2020. RESULTS: The LAC saw a reduction in the speed, acceleration, and jerk for the week of October 13, 2020, compared to the week of October 6, 2020, accompanied by reductions in new cases and the 7-day moving average. For the week of October 6, 2020, Belize reported the highest acceleration and jerk, at 1.7 and 1.8, respectively, which is particularly concerning, given its high mortality rate. The Bahamas also had a high acceleration at 1.5. In total, 11 countries had a positive acceleration during the week of October 6, 2020, whereas only 6 countries had a positive acceleration for the week of October 13, 2020. The TAC displayed an overall positive trend, with a speed of 10.40, acceleration of 0.27, and jerk of -0.31, all of which decreased in the subsequent week to 9.04, -0.81, and -0.03, respectively. CONCLUSIONS: Metrics such as new cases, cumulative cases, deaths, and 7-day moving averages provide a static view of the pandemic but fail to identify where and the speed at which SARS-CoV-2 infects new individuals, the rate of acceleration or deceleration of the pandemic, and weekly comparison of the rate of acceleration of the pandemic indicate impending explosive growth or control of the pandemic. Enhanced surveillance will inform policymakers and leaders in the LAC about COVID-19 outbreaks.
Assuntos
COVID-19/epidemiologia , Vigilância em Saúde Pública , Região do Caribe/epidemiologia , Humanos , América Latina/epidemiologia , Estudos LongitudinaisRESUMO
BACKGROUND: COVID-19 transmission rates in South Asia initially were under control when governments implemented health policies aimed at controlling the pandemic such as quarantines, travel bans, and border, business, and school closures. Governments have since relaxed public health restrictions, which resulted in significant outbreaks, shifting the global epicenter of COVID-19 to India. Ongoing systematic public health surveillance of the COVID-19 pandemic is needed to inform disease prevention policy to re-establish control over the pandemic within South Asia. OBJECTIVE: This study aimed to inform public health leaders about the state of the COVID-19 pandemic, how South Asia displays differences within and among countries and other global regions, and where immediate action is needed to control the outbreaks. METHODS: We extracted COVID-19 data spanning 62 days from public health registries and calculated traditional and enhanced surveillance metrics. We use an empirical difference equation to measure the daily number of cases in South Asia as a function of the prior number of cases, the level of testing, and weekly shifts in variables with a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Traditional surveillance metrics indicate that South Asian countries have an alarming outbreak, with India leading the region with 310,310 new daily cases in accordance with the 7-day moving average. Enhanced surveillance indicates that while Pakistan and Bangladesh still have a high daily number of new COVID-19 cases (n=4819 and n=3878, respectively), their speed of new infections declined from April 12-25, 2021, from 2.28 to 2.18 and 3.15 to 2.35 daily new infections per 100,000 population, respectively, which suggests that their outbreaks are decreasing and that these countries are headed in the right direction. In contrast, India's speed of new infections per 100,000 population increased by 52% during the same period from 14.79 to 22.49 new cases per day per 100,000 population, which constitutes an increased outbreak. CONCLUSIONS: Relaxation of public health restrictions and the spread of novel variants fueled the second wave of the COVID-19 pandemic in South Asia. Public health surveillance indicates that shifts in policy and the spread of new variants correlate with a drastic expansion in the pandemic, requiring immediate action to mitigate the spread of COVID-19. Surveillance is needed to inform leaders whether policies help control the pandemic.