Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385311

RESUMO

Death receptor-mediated apoptosis requires the mitochondrial apoptosis pathway in many mammalian cells. In response to death receptor signaling, the truncated BH3-only protein BID can activate the proapoptotic BCL-2 proteins BAX and BAK and trigger the permeabilization of the mitochondria. BAX and BAK are inhibited by prosurvival BCL-2 proteins through retrotranslocation from the mitochondria into the cytosol, but a specific resistance mechanism to truncated BID-dependent apoptosis is unknown. Here, we report that hexokinase 1 and hexokinase 2 inhibit the apoptosis activator truncated BID as well as the effectors BAX and BAK by retrotranslocation from the mitochondria into the cytosol. BCL-2 protein shuttling and protection from TRAIL- and FasL-induced cell death requires mitochondrial hexokinase localization and interactions with the BH3 motifs of BCL-2 proteins but not glucose phosphorylation. Together, our work establishes hexokinase-dependent retrotranslocation of truncated BID as a selective protective mechanism against death receptor-induced apoptosis on the mitochondria.


Assuntos
Apoptose/fisiologia , Hexoquinase/metabolismo , Mitocôndrias/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Antibacterianos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular , Ciclosporina/farmacologia , Dactinomicina/farmacologia , Doxorrubicina/farmacologia , Inibidores Enzimáticos/farmacologia , Proteína Ligante Fas/farmacologia , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hexoquinase/genética , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
2.
J Cell Sci ; 130(17): 2903-2913, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760928

RESUMO

The pro-apoptotic BCL-2 protein BAX commits human cells to apoptosis by permeabilizing the outer mitochondrial membrane. BAX activation has been suggested to require the separation of helix α5 from α6 - the 'latch' from the 'core' domain - among other conformational changes. Here, we show that conformational changes in this region impair BAX translocation to the mitochondria and retrotranslocation back into the cytosol, and therefore BAX inhibition, but not activation. Redirecting misregulated BAX to the mitochondria revealed an alternative mechanism of BAX inhibition. The E3 ligase parkin, which is known to trigger mitochondria-specific autophagy, ubiquitylates BAX K128 and targets the pro-apoptotic BCL-2 protein for proteasomal degradation. Retrotranslocation-deficient BAX is completely degraded in a parkin-dependent manner. Although only a minor pool of endogenous BAX escapes retrotranslocation into the cytosol, parkin-dependent targeting of misregulated BAX on the mitochondria provides substantial protection against BAX apoptotic activity.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose , Citoproteção , Células HCT116 , Humanos , Lisina/metabolismo , Mitocôndrias/metabolismo , Estrutura Secundária de Proteína , Transporte Proteico , Ubiquitinação , Proteína X Associada a bcl-2/química
3.
Cancers (Basel) ; 12(6)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486514

RESUMO

Cancer therapies induce differential cell responses, ranging from efficient cell death to complete stress resistance. The BCL-2 proteins BAX and BAK govern the cellular decision between survival and mitochondrial apoptosis. Therefore, the status of BAX/BAK regulation can predict the cellular apoptosis predisposition. Relative BAX/BAK localization was analyzed in tumor and corresponding non-tumor samples from 34 hepatocellular carcinoma (HCC) patients. Key transcriptome changes and gene expression profiles related to the status of BAX regulation were applied to two independent cohorts including over 500 HCC patients. The prediction of apoptotic response was tested using cell lines and polyclonal tumor isolates. Cellular protection from BAX was confirmed by challenging cells with mitochondrial BAX. We discovered a subgroup of HCC with selective protection from BAX-dependent apoptosis. BAX-protected tumors showed enrichment of signaling pathways associated with oxidative stress response and DNA repair as well as increased genetic heterogeneity. Gene expression profiles characteristic to BAX-specific protection are enriched in poorly differentiated HCCs and show significant association to the overall survival of HCC patients. Consistently, addiction to DNA repair of BAX-protected cancer cells caused selective sensitivity to PARP inhibition. Molecular characteristics of BAX-protected HCC were enriched in cells challenged with mitochondrial BAX. Our results demonstrate that predisposition to BAX activation impairs tumor biology in HCC. Selective BAX inhibition or lack thereof delineates distinct subgroups of HCC patients with molecular features and differential response pattern to apoptotic stimuli and inhibition of DNA repair mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA