Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(13): 6313-6318, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30862735

RESUMO

Hepatic ammonia handling was analyzed in taurine transporter (TauT) KO mice. Surprisingly, hyperammonemia was present at an age of 3 and 12 months despite normal tissue integrity. This was accompanied by cerebral RNA oxidation. As shown in liver perfusion experiments, glutamine production from ammonia was diminished in TauT KO mice, whereas urea production was not affected. In livers from 3-month-old TauT KO mice protein expression and activity of glutamine synthetase (GS) were unaffected, whereas the ammonia-transporting RhBG protein was down-regulated by about 50%. Double reciprocal plot analysis of glutamine synthesis versus perivenous ammonia concentration revealed that TauT KO had no effect on the capacity of glutamine formation in 3-month-old mice, but doubled the ammonia concentration required for half-maximal glutamine synthesis. Since hepatic RhBG expression is restricted to GS-expressing hepatocytes, the findings suggest that an impaired ammonia transport into these cells impairs glutamine synthesis. In livers from 12-, but not 3-month-old TauT KO mice, RhBG expression was not affected, surrogate markers for oxidative stress were strongly up-regulated, and GS activity was decreased by 40% due to an inactivating tyrosine nitration. This was also reflected by kinetic analyses in perfused liver, which showed a decreased glutamine synthesizing capacity by 43% and a largely unaffected ammonia concentration dependence. It is concluded that TauT deficiency triggers hyperammonemia through impaired hepatic glutamine synthesis due to an impaired ammonia transport via RhBG at 3 months and a tyrosine nitration-dependent inactivation of GS in 12-month-old TauT KO mice.


Assuntos
Amônia/metabolismo , Deficiências Nutricionais , Inativação Metabólica , Fígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Deficiências Nutricionais/patologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Técnicas de Silenciamento de Genes , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Glicoproteínas/metabolismo , Hepatócitos/metabolismo , Hiperamonemia/metabolismo , Cinética , Fígado/patologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Estresse Oxidativo , Perfusão , Ureia/metabolismo
2.
Biol Chem ; 400(12): 1551-1565, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31152635

RESUMO

Tauroursodeoxycholate (TUDC) is well known to protect against glycochenodeoxycholate (GCDC)-induced apoptosis in rat hepatocytes. In the present study, we analyzed whether TUDC also exerts protective effects by modulating GCDC-induced gene expression changes. For this, gene array-based transcriptome analysis and quantitative polymerase chain reaction (qPCR) were performed on RNA isolated from rat livers perfused with GCDC, TUDC or a combination of both (each 20 µm for 2 h). GCDC led to a significant increase of lactate dehydrogenase (LDH) into the effluent perfusate, which was prevented by TUDC. GCDC, TUDC and co-perfusion induced distinct gene expression changes. While GCDC upregulated the expression of several pro-inflammatory genes, co-perfusion with TUDC increased the expression of pro-proliferative and anti-apoptotic p53 target genes. In line with this, levels of serine20-phosphorylated p53 and of its target gene p21 were elevated by GCDC in a TUDC-sensitive way. GCDC upregulated the oxidative stress surrogate marker 8OH(d)G and the pro-apoptotic microRNAs miR-15b/16 and these effects were prevented by TUDC. The upregulation of miR-15b and miR-16 in GCDC-perfused livers was accompanied by a downregulation of several potential miR-15b and miR-16 target genes. The present study identified changes in the transcriptome of the rat liver which suggest, that TUDC is hepatoprotective by counteracting GCDC-induced gene expression changes.


Assuntos
Ácido Glicoquenodesoxicólico/antagonistas & inibidores , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Ácido Glicoquenodesoxicólico/farmacologia , Fígado/efeitos dos fármacos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , RNA/efeitos dos fármacos , RNA/genética , RNA/isolamento & purificação , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
3.
Arch Biochem Biophys ; 560: 59-72, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25004465

RESUMO

This study characterizes the expression of the osmolyte transporters betaine/γ-amino-n-butyric acid (GABA) transporter (BGT-1), the taurine transporter (TauT) and the sodium-dependent myo-inositol transporter (SMIT) in various rat brain cells in culture and in rat and human cerebral cortex in situ. Osmolyte transporter expression greatly differed between cultured brain cells with highest mRNA expression levels for SMIT in astrocytes and TauT in neurons. BGT-1 mRNA and protein were expressed in microglia but not in astrocytes and neurons. In rat and human cerebral cortex, SMIT was expressed in astrocytes and TauT was found in neurons. Osmolyte transporter expression was subject to regulation by factors relevant for hepatic encephalopathy (HE). Hypoosmolarity, NH4Cl (0.5-5 mmol/l), diazepam (10 µmol/l) and TNFα (10 ng/ml) time-dependently decreased mRNA expression of SMIT and/or TauT in cultured astrocytes. NH4Cl-induced SMIT/TauT mRNA expression changes were sensitive to inhibitors of glutamine synthetase and NADPH oxidase. In rat cerebral cortex, SMIT mRNA expression decreased after portal vein ligation or ammonium acetate injection probably due to astrocyte swelling in these HE animal models. It is concluded that osmolyte transporters are heterogeneously expressed in brain and are subject to regulation by HE-relevant factors.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Acetatos/toxicidade , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligadura , Masculino , Veia Porta/cirurgia , Ratos
4.
Sci Rep ; 6: 18493, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26755400

RESUMO

Hepatic encephalopathy is a neuropsychiatric syndrome evolving from cerebral osmotic disturbances and oxidative/nitrosative stress. Ammonia, the main toxin of hepatic encephalopathy, triggers astrocyte senescence in an oxidative stress-dependent way. As miRNAs are critically involved in cell cycle regulation and their expression may be regulated by oxidative stress, we analysed, whether astrocyte senescence is a consequence of ammonia-induced miRNA expression changes. Using a combined miRNA and gene microarray approach, 43 miRNA species which were downregulated and 142 genes which were upregulated by NH4Cl (5 mmol/l, 48 h) in cultured rat astrocytes were found. Ammonia-induced miRNA and gene expression changes were validated by qPCR and 43 potential miRNA target genes, including HO-1, were identified by matching upregulated mRNA species with predicted targets of miRNA species downregulated by ammonia. Inhibition of HO-1 targeting miRNAs which were downregulated by NH4Cl strongly upregulated HO-1 mRNA and protein levels and inhibited astrocyte proliferation in a HO-1-dependent way. Preventing ammonia-induced upregulation of HO-1 by taurine (5 mmol/l) as well as blocking HO-1 activity by tin-protoporphyrine IX fully prevented ammonia-induced proliferation inhibition and senescence. The data suggest that ammonia induces astrocyte senescence through NADPH oxidase-dependent downregulation of HO-1 targeting miRNAs and concomitant upregulation of HO-1 at both mRNA and protein level.


Assuntos
Amônia/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Animais , Proliferação de Células , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Glutamina/biossíntese , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , NADPH Oxidases/metabolismo , Ratos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA