Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pharmacol Res ; 198: 107005, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992916

RESUMO

AIMS: The cardio-protective and immuno-regulatory properties of RTP-026, a synthetic peptide that spans the Annexin-A1 (AnxA1) N-terminal region, were tested in rat acute myocardial infarction. METHODS AND RESULTS: In vitro, selective activation of formyl-peptide receptor type 2 (FPR2) by RTP-026 occurred with apparent EC50 in the 10-30 nM range. With human primary cells, RTP-026 counteracted extension of neutrophil life-span and augmented phagocytosis of fluorescent E.coli by blood myeloid cells. An in vivo model of rat acute infarction was used to quantify tissue injury and phenotype immune cells in myocardium and blood. The rat left anterior descending coronary artery was occluded and then reopened for 2-hour or 24-hour reperfusion. For the 2-hour reperfusion protocol, RTP-026 (25-500 µg/kg; given i.v. at the start of reperfusion) significantly reduced infarct size by ∼50 %, with maximal efficacy at 50 µg/kg. Analyses of cardiac immune cells showed that RTP-026 reduced neutrophil and classical monocyte recruitment to the damaged heart. In the blood, RTP-026 (50 µg/kg) attenuated activation of neutrophils and monocytes monitored through CD62L and CD54 expression. Modulation of vascular inflammation by RTP-026 was demonstrated by reduction in plasma levels of mediators like TNF-α, IL-1ß, KC, PGE2 and PGF2α⊡ For the 24-hour reperfusion protocol, RTP-026 (30 µg/kg given i.v. at 0, 3 and 6 h reperfusion) reduced necrotic myocardium by ∼40 %. CONCLUSIONS: RTP-026 modulate immune cell responses and decreases infarct size of the heart in preclinical settings. Tempering over-exuberant immune cell activation by RTP-026 is a suitable approach to translate the biology of AnxA1 for therapeutic purposes.


Assuntos
Anexina A1 , Infarto do Miocárdio , Ratos , Animais , Humanos , Anexina A1/farmacologia , Peptídeos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Coração , Neutrófilos/metabolismo
2.
Brain Behav Immun ; 106: 289-306, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115544

RESUMO

Pain is a persistent symptom of Rheumatoid Arthritis, and the K/BxN serum transfer model recapitulates both association and dissociation between pain and joint inflammation in RA. Furthermore, this model features monocyte/macrophage infiltration in joints and lumbar dorsal root ganglia (DRG), where these immune cells are close to nociceptive neurons. We focussed on CX3CR1-monocyte/macrophage trafficking and show that at peak paw swelling associated with nociception, CX3CR1 deletion altered neither swelling nor macrophage infiltration/phenotype in paws. However, acute nociception and DRG non-classical monocyte numbers were reduced in CX3CR1GFP/GFP (KO) compared to CX3CR1+/GFP (WT). Nociception that persisted despite swelling had resolved was attenuated in KO and correlated with DRG macrophages displaying M2-like phenotype. Still in the DRG, neurons up-regulated neuropeptide CGRP and olcegepant treatment reduced acute swelling, nociception, and leukocyte infiltration in paws and DRG. We delineate in-vitro a signalling pathway showing that CGRP liberates the CX3CR1 ligand fractalkine (FKN) from endothelium, and in bone marrow-derived macrophages, FKN promotes activation of intracellular kinases, polarisation towards M1-like phenotype and release of pro-nociceptive IL-6. These data implicate non-classical CX3CR1-expressing monocyte and macrophage recruitment into the DRG in initiation and maintenance of arthritis pain.


Assuntos
Artrite Reumatoide , Quimiocina CX3CL1 , Receptor 1 de Quimiocina CX3C/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Quimiocina CX3CL1/metabolismo , Gânglios Espinais/metabolismo , Humanos , Interleucina-6/metabolismo , Ligantes , Macrófagos/metabolismo , Monócitos/metabolismo , Dor/metabolismo
3.
Brain Behav Immun ; 87: 689-702, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32126289

RESUMO

Patients suffering from autoimmune diseases are more susceptible to mental disorders yet, the existence of specific cellular and molecular mechanisms behind the co-morbidity of these pathologies is far from being fully elucidated. By generating transgenic mice overexpressing Annexin-A1 exclusively in T cells to study its impact in models of autoimmune diseases, we made the unpredicted observation of an increased level of anxiety. Gene microarray of Annexin-A1 CD4+ T cells identified a novel anxiogenic factor, a small protein of approximately 21 kDa encoded by the gene 2610019F03Rik which we named Immuno-moodulin. Neutralizing antibodies against Immuno-moodulin reverted the behavioral phenotype of Annexin-A1 transgenic mice and lowered the basal levels of anxiety in wild type mice; moreover, we also found that patients suffering from obsessive compulsive disorders show high levels of Imood in their peripheral mononuclear cells. We thus identify this protein as a novel peripheral determinant that modulates anxiety behavior. Therapies targeting Immuno-moodulin may lead to a new type of treatment for mental disorders through regulation of the functions of the immune system, rather than directly acting on the nervous system.


Assuntos
Anexina A1 , Doenças Autoimunes , Animais , Humanos , Camundongos , Camundongos Transgênicos , Linfócitos T
4.
Arthritis Rheumatol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041647

RESUMO

OBJECTIVE: This study was undertaken to establish the potential therapeutic profile of neutrophil-derived extracellular vesicles (EVs) in experimental inflammatory arthritis and associate pharmacological activity with specific EV components, focusing on microRNAs. METHODS: Neutrophil EVs were administered intra-articularly through a prophylactic or therapeutic protocol to male C57BL/6 mice undergoing serum-transfer-induced inflammatory arthritis. Transcriptomic analysis of knees was performed on joints following EV administration, naive and arthritic mice (untreated; n = 4/group) and EV-treated diseased mice (intra-articular administration) with contralateral (vehicle-treated; n = 8/group). Comparison of healthy donor and patients with rheumatoid arthritis (RA) neutrophil EVs was performed. RESULTS: EVs afforded cartilage protection with an increase in collagen-II and reduced collagen-X expression within the joint. To gain mechanistic insights, RNA sequencing of the arthritic joints was conducted. A total of 5,231 genes were differentially expressed (P < 0.05), with 257 unique to EV treatment. EVs affected key regenerative pathways involved in joint development, including Wnt and Notch signaling. This wealth of genomic alteration prompted to identify microRNAs in EVs, 10 of which are associated with RA. As a proof of concept, we focused on miR-455-3p, which was detected in both healthy donor and RA EVs. EV addition to chondrocyte cultures elevated miR-455-3p and exerted anticatabolic effects upon interleukin-1ß stimulation; these effects were blocked by actinomycin or miR-455-3p antagomir. CONCLUSION: Neutrophils from patients with RA yielded EVs with composition, efficacy, and miR-455-3p content similar to those of healthy volunteers, suggesting that neutrophil EVs could be developed as an autologous treatment to protect and repair joint tissue of patients affected by inflammatory arthritides.

5.
Nat Commun ; 14(1): 3579, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349313

RESUMO

Musculoskeletal chronic pain is prevalent in individuals with Alzheimer's disease (AD); however, it remains largely untreated in these patients, raising the possibility that pain mechanisms are perturbed. Here, we utilise the TASTPM transgenic mouse model of AD with the K/BxN serum transfer model of inflammatory arthritis. We show that in male and female WT mice, inflammatory allodynia is associated with a distinct spinal cord microglial response characterised by TLR4-driven transcriptional profile and upregulation of P2Y12. Dorsal horn nociceptive afferent terminals release the TLR4 ligand galectin-3 (Gal-3), and intrathecal injection of a Gal-3 inhibitor attenuates allodynia. In contrast, TASTPM mice show reduced inflammatory allodynia, which is not affected by the Gal-3 inhibitor and correlates with the emergence of a P2Y12- TLR4- microglia subset in the dorsal horn. We suggest that sensory neuron-derived Gal-3 promotes allodynia through the TLR4-regulated release of pro-nociceptive mediators by microglia, a process that is defective in TASTPM due to the absence of TLR4 in a microglia subset.


Assuntos
Doença de Alzheimer , Dor Crônica , Camundongos , Masculino , Feminino , Animais , Hiperalgesia/genética , Microglia , Doença de Alzheimer/genética , Galectina 3/genética , Nociceptividade , Receptor 4 Toll-Like/genética , Medula Espinal , Corno Dorsal da Medula Espinal , Camundongos Transgênicos , Dor Crônica/genética , Modelos Animais de Doenças
6.
J Hypertens ; 40(8): 1522-1529, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35730409

RESUMO

BACKGROUND: Rapid and accurate new biomarkers to predict risk of cardiovascular disease (CVD) are essential. The utility of extracellular vesicles in predicting the CVD risk is postulated, yet it remains unknown whether their expression is altered in response to statin therapy. METHODS: We performed in-vitro studies with human umbilical vein endothelial cells (HUVEC) and vascular smooth muscle cells (hVSMC), and conducted a nested case-control study (nCCS) in hypertensive patients ( n  = 40) randomized to either atorvastatin or placebo in the ASCOT-LLA. Cases had a major adverse cardiovascular event or death (MACE) during 3.5 years of follow-up (median) from the time of extracellular vesicle characterization while controls, matched for age and duration of treatment, remained event-free. Conditional logistic regression models determined the risk of MACE. Additionally, the relationship of extracellular vesicle levels with statin therapy was assessed. RESULTS: Added to HUVEC, extracellular vesicles increased neutrophil recruitment, and to hVSMC, aggravated calcification and proliferation. In the nCCS, compared with controls, cases (i.e. with MACE) had preceding higher levels of CD14+ and CD14+/CD41+ extracellular vesicles ( P  = 0.009 and P  = 0.012, respectively) and a significant reduction in the median size of the vesicles ( P  = 0.037). On matched analysis, higher CD14+ extracellular vesicles were associated with a 3.7-fold increased risk of MACE ( P  = 0.032). Patients treated with atorvastatin (vs. placebo) had both reduced size of extracellular vesicles and the proportion of CD146+ extracellular vesicles ( P  = 0.034 and P  = 0.020, respectively). CONCLUSION AND RELEVANCE: These pilot analyses suggest a mechanistic role for extracellular vesicles in the development of CVD, with significant and differential changes in extracellular vesicles amongst those at risk of MACE, and those on atorvastatin therapy.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipertensão , Atorvastatina/efeitos adversos , Atorvastatina/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Estudos de Casos e Controles , Células Endoteliais , Fatores de Risco de Doenças Cardíacas , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipertensão/induzido quimicamente , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Fatores de Risco
7.
Free Radic Biol Med ; 175: 80-94, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461260

RESUMO

Extracellular vesicles are small membrane-derived packages of information that are released from virtually all cell types. These nano-packages contain regulatory material including proteins, lipids, mRNA and microRNA and are a key mechanism of paracellular communication within a given microenvironment. Encompassed with a lipid bilayer, these organelles have been attributed numerous roles in regulating both physiological and pathological functions. Herein, we describe the role of EVs in the context of Rheumatoid and Osteoarthritis and explore how they could be harnessed to treat inflammatory and degenerative joint conditions. These structures offer a promising therapeutic strategy for treating musculoskeletal diseases due to their bioactive content, stability, small size and intrinsic ability to enter the avascular cartilage, a notoriously challenging tissue to target. We also discuss how EVs can be manipulated to load therapeutic cargo or present additional targeting moieties to enhance their beneficial actions and tissue regenerative properties.


Assuntos
Vesículas Extracelulares , MicroRNAs , Cartilagem , RNA Mensageiro , Cicatrização
8.
J Extracell Vesicles ; 10(6): 12084, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33936566

RESUMO

Extracellular vesicles (EVs) are emerging as key players in different stages of atherosclerosis. Here we provide evidence that EVs released by mixed aggregates of monocytes and platelets in response to TNF-α display pro-inflammatory actions on endothelial cells and atherosclerotic plaques. Tempering platelet activation with Iloprost, Aspirin or a P2Y12 inhibitor impacted quantity and phenotype of EV produced. Proteomics of EVs from cells activated with TNF-α alone or in the presence of Iloprost revealed a distinct composition, with interesting hits like annexin-A1 and gelsolin. When added to human atherosclerotic plaque explants, EVs from TNF-α stimulated monocytes augmented release of cytokines. In contrast, EVs generated by TNF-α together with Iloprost produced minimal plaque activation. Notably, patients with coronary artery disease that required percutaneous coronary intervention had elevated plasma numbers of monocyte, platelet as well as double positive EV subsets. In conclusion, EVs released following monocyte/platelet activation may play a potential role in the development and progression of atherosclerosis. Whereas attenuating platelet activation modifies EV composition released from monocyte/platelet aggregates, curbing their pro-inflammatory actions may offer therapeutic avenues for the treatment of atherosclerosis.


Assuntos
Vesículas Extracelulares/fisiologia , Monócitos/fisiologia , Placa Aterosclerótica/fisiopatologia , Agregação Plaquetária/fisiologia , Aspirina/farmacologia , Aterosclerose/fisiopatologia , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Citocinas , Células Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Voluntários Saudáveis , Humanos , Inflamação/imunologia , Monócitos/citologia , Ativação Plaquetária/efeitos dos fármacos , Fator de Necrose Tumoral alfa
9.
Cells ; 10(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440764

RESUMO

OBJECTIVE: platelets possess not only haemostatic but also inflammatory properties, which combined are thought to play a detrimental role in thromboinflammatory diseases such as acute coronary syndromes and stroke. Phosphodiesterase (PDE) 3 and -5 inhibitors have demonstrated efficacy in secondary prevention of arterial thrombosis, partially mediated by their antiplatelet action. Yet it is unclear whether such inhibitors also affect platelets' inflammatory functions. Here, we aimed to examine the effect of the PDE3A inhibitor cilostazol and the PDE5 inhibitor tadalafil on platelet function in various aspects of thromboinflammation. Approach and results: cilostazol, but not tadalafil, delayed ex vivo platelet-dependent fibrin formation under whole blood flow over type I collagen at 1000 s-1. Similar results were obtained with blood from Pde3a deficient mice, indicating that cilostazol effects are mediated via PDE3A. Interestingly, cilostazol specifically reduced the release of phosphatidylserine-positive extracellular vesicles (EVs) from human platelets while not affecting total EV release. Both cilostazol and tadalafil reduced the interaction of human platelets with inflamed endothelium under arterial flow and the release of the chemokines CCL5 and CXCL4 from platelets. Moreover, cilostazol, but not tadalafil, reduced monocyte recruitment and platelet-monocyte interaction in vitro. CONCLUSIONS: this study demonstrated yet unrecognised roles for platelet PDE3A and platelet PDE5 in platelet procoagulant and proinflammatory responses.


Assuntos
Anti-Inflamatórios/farmacologia , Plaquetas/efeitos dos fármacos , Cilostazol/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Fibrinolíticos/farmacologia , Inibidores da Fosfodiesterase 3/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Animais , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/enzimologia , Plaquetas/imunologia , Células Cultivadas , Quimiocinas/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Fibrina/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores da Fosfodiesterase 5/farmacologia , Adesividade Plaquetária/efeitos dos fármacos , Transdução de Sinais , Tadalafila/farmacologia
10.
Front Immunol ; 11: 576516, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391256

RESUMO

Background: Atherosclerosis is a chronic inflammatory disease driven by macrophage accumulation in medium and large sized arteries. Macrophage polarization and inflammation are governed by microRNAs (miR) that regulate the expression of inflammatory proteins and cholesterol trafficking. Previous transcriptomic analysis led us to hypothesize that miR-155-5p (miR-155) is regulated by conjugated linoleic acid (CLA), a pro-resolving mediator which induces regression of atherosclerosis in vivo. In parallel, as extracellular vesicles (EVs) and their miR content have potential as biomarkers, we investigated alterations in urinary-derived EVs (uEVs) during the progression of human coronary artery disease (CAD). Methods: miR-155 expression was quantified in aortae from ApoE-/- mice fed a 1% cholesterol diet supplemented with CLA blend (80:20, cis-9,trans-11:trans-10,cis-12 respectively) which had been previously been shown to induce atherosclerosis regression. In parallel, human polarized THP-1 macrophages were used to investigate the effects of CLA blend on miR-155 expression. A miR-155 mimic was used to investigate its inflammatory effects on macrophages and on ex vivo human carotid endarterectomy (CEA) plaque specimens (n = 5). Surface marker expression and miR content were analyzed in urinary extracellular vesicles (uEVs) obtained from patients diagnosed with unstable (n = 12) and stable (n = 12) CAD. Results: Here, we report that the 1% cholesterol diet increased miR-155 expression while CLA blend supplementation decreased miR-155 expression in the aorta during atherosclerosis regression in vivo. CLA blend also decreased miR-155 expression in vitro in human THP-1 polarized macrophages. Furthermore, in THP-1 macrophages, miR-155 mimic decreased the anti-inflammatory signaling proteins, BCL-6 and phosphorylated-STAT-3. In addition, miR-155 mimic downregulated BCL-6 in CEA plaque specimens. uEVs from patients with unstable CAD had increased expression of miR-155 in comparison to patients with stable CAD. While the overall concentration of uEVs was decreased in patients with unstable CAD, levels of CD45+ uEVs were increased. Additionally, patients with unstable CAD had increased CD11b+ uEVs and decreased CD16+ uEVs. Conclusion: miR-155 suppresses anti-inflammatory signaling in macrophages, is decreased during regression of atherosclerosis in vivo and is increased in uEVs from patients with unstable CAD suggesting miR-155 has potential as a prognostic indicator and a therapeutic target.


Assuntos
Síndrome Coronariana Aguda/urina , Doenças da Aorta/urina , Aterosclerose/urina , Doenças das Artérias Carótidas/metabolismo , Doença da Artéria Coronariana/urina , Vesículas Extracelulares/metabolismo , MicroRNAs/urina , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/genética , Idoso , Animais , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/urina , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Modelos Animais de Doenças , Progressão da Doença , Vesículas Extracelulares/genética , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , Pessoa de Meia-Idade , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Células THP-1
11.
Pain ; 161(9): 2155-2166, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32379221

RESUMO

ABSTRACT: Rheumatoid arthritis-associated pain is poorly managed, often persisting when joint inflammation is pharmacologically controlled. Comparably, in the mouse K/BxN serum-transfer model of inflammatory arthritis, hind paw nociceptive hypersensitivity occurs with ankle joint swelling (5 days after immunisation) persisting after swelling has resolved (25 days after immunisation). In this study, lipid mediator (LM) profiling of lumbar dorsal root ganglia (DRG), the site of sensory neuron cell bodies innervating the ankle joints, 5 days and 25 days after serum transfer demonstrated a shift in specialised proresolving LM profiles. Persistent nociception without joint swelling was associated with low concentrations of the specialised proresolving LM Maresin 1 (MaR1) and high macrophage numbers in DRG. MaR1 application to cultured DRG neurons inhibited both capsaicin-induced increase of intracellular calcium ions and release of calcitonin gene-related peptide in a dose-dependent manner. Furthermore, in peritoneal macrophages challenged with lipopolysaccharide, MaR1 reduced proinflammatory cytokine expression. Systemic MaR1 administration caused sustained reversal of nociceptive hypersensitivity and reduced inflammatory macrophage numbers in DRG. Unlike gabapentin, which was used as positive control, systemic MaR1 did not display acute antihyperalgesic action. Therefore, these data suggest that MaR1 effects observed after K/BxN serum transfer relate to modulation of macrophage recruitment, more likely than to direct actions on sensory neurons. Our study highlights that, in DRG, aberrant proresolution mechanisms play a key role in arthritis joint pain dissociated from joint swelling, opening novel approaches for rheumatoid arthritis pain treatment.


Assuntos
Gânglios Espinais , Hiperalgesia , Animais , Peptídeo Relacionado com Gene de Calcitonina , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Macrófagos , Camundongos , Dor
12.
Front Pharmacol ; 10: 1479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920664

RESUMO

Extracellular vesicles are a heterogeneous family of vesicles, generated from different subcellular compartments and released into the extracellular space. Composed of a lipid bilayer encompassing both soluble cytosolic material and nuclear components, these organelles have been recently described as novel regulators of intercellular communication between adjacent and remote cells. Due to their diversified composition and biological content, they portray specific signatures of cellular activation and pathological processes, their potential as diagnostic and prognostic biomarkers has raised significant interest in cardiovascular diseases. Circulating vesicles, especially those released from platelets, leukocytes, and endothelial cells are found to play a critical role in activating several fundamental cells within the vasculature, including endothelial cells and vascular smooth muscle cells. Their intrinsic activity and immunomodulatory properties lends them to not only promote vascular inflammation, but also enhance tissue regeneration, vascular repair, and indeed resolution. In this review we aim to recapitulate the recent findings concerning the roles played by EVs that originate from different circulating cells, with particular reference to their action on the endothelium. We focus herein, on the interaction of platelet and leukocyte EVs with the endothelium. In addition, their potential biological function in promoting tissue resolution and vascular repair will also be discussed.

13.
Shock ; 49(4): 393-401, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28930915

RESUMO

RATIONALE: Microvesicles (MV) act as a nonsoluble means of intercellular communication, with effector roles in disease pathogenesis and potentially as biomarkers. Previously, we reported that neutrophil MV expressing alpha-2-macroglobulin (A2MG) are protective in experimental sepsis and associate with survival in a small cohort of patients with sepsis due to community acquired pneumonia (CAP). OBJECTIVES: To characterize MV profiles in sepsis due to CAP or fecal peritonitis (FP) and determine their relation to outcome. To investigate the effects of novel sepsis treatments (granulocyte-macrophage colony stimulating factor (GM-CSF) and interferon-υ (IFN-γ)) on MV production and functions in vitro. METHODS: Flow cytometry analysis of MV identified the cell of origin and the proportion of A2MG expression in the plasma of patients with sepsis secondary to CAP (n = 60) or FP (n = 40) and compared with healthy volunteers (HV, n = 10). The association between MV subsets and outcome was examined. The ability of GM-CSF and IFN-γ on A2MG MV production from whole blood was examined together with the assessment of their effect on neutrophil and endothelial functions. RESULTS: Circulating cell-derived and A2MG MV were higher in CAP compared with FP and HV. A2MG MV were higher in survivors of CAP, but not in FP. GM-CSF and IFN-γ enhanced A2MG MV production, with these MV eliciting pathogen clearance in vitro. CONCLUSIONS: Plasma MV profiles vary according to the source of infection. A2MG MV are associated with survival in CAP but not FP. We propose specific MV subsets as novel biomarkers in sepsis and potential effector for some of the actions of experimental therapeutic interventions.


Assuntos
Infecções Comunitárias Adquiridas/imunologia , Infecções Comunitárias Adquiridas/metabolismo , Peritonite/imunologia , Peritonite/metabolismo , Pneumonia/imunologia , Pneumonia/metabolismo , Sepse/imunologia , Sepse/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Interferon gama/metabolismo , Neutrófilos/metabolismo , alfa-Macroglobulinas/metabolismo
14.
Sci Rep ; 6: 37277, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853260

RESUMO

An impairment of cardiac function is a key feature of the cardiovascular failure associated with sepsis. Although there is some evidence that suppression of sarcoplasmic reticulum Ca2+-ATP-ase (SERCA2) contributes to septic cardiomyopathy, it is not known whether prevention of the down-regulation of SERCA2 improves outcome in sepsis. Thus, we investigated whether the administration of the synthetic antimicrobial peptide Pep2.5 may attenuate the cardiac dysfunction in murine polymicrobial sepsis through regulating SERCA2 expression. We show here for the first time that the infusion of Pep2.5 reduces the impaired systolic and diastolic contractility and improves the survival time in polymicrobial sepsis. Preservation of cardiac function in sepsis by Pep2.5 is associated with prevention of the activation of NF-κB and activation of the Akt/eNOS survival pathways. Most notably, Pep2.5 prevented the down-regulation of SERCA2 expression in a) murine heart samples obtained from mice with sepsis and b) in cardiomyocytes exposed to serum from septic shock patients. Thus, we speculate that Pep2.5 may be able to prevent down-regulation of cardiac SERCA2 expression in patients with sepsis, which, in turn, may improve cardiac function and outcome in these patients.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Cardiomiopatias/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Sepse/tratamento farmacológico , Animais , Peptídeos Catiônicos Antimicrobianos/química , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/metabolismo , Sepse/patologia , Sepse/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA